Automated measurement of spine indices on axial MR images for lumbar spinal stenosis diagnosis using segmentation‐guided regression network

分割 特征(语言学) 人工智能 计算机科学 编码器 图像分割 模式识别(心理学) 回归 计算机视觉 数学 统计 语言学 操作系统 哲学
作者
Chunlan Pang,Zhihai Su,Liyan Lin,Guoye Lin,Ji He,Hai Lü,Qianjin Feng,Shumao Pang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (1): 104-116
标识
DOI:10.1002/mp.15961
摘要

Abstract Purpose Automated measurement of spine indices on axial magnetic resonance (MR) images plays a significant role in lumbar spinal stenosis diagnosis. Existing direct spine indices measurement approaches fail to explicitly focus on the task‐specific region or feature channel with the additional information for guiding. We aim to achieve accurate spine indices measurement by introducing the guidance of the segmentation task. Methods In this paper, we propose a segmentation‐guided regression network (SGRNet) to achieve automated spine indices measurement. SGRNet consists of a segmentation path for generating the spine segmentation prediction and a regression path for producing spine indices estimation. The segmentation path is a U‐Net‐like network which includes a segmentation encoder and a decoder which generates multilevel segmentation features and segmentation prediction. The proposed segmentation‐guided attention module (SGAM) in the regression encoder extracts the attention‐aware regression feature under the guidance of the segmentation feature. Based on the attention‐aware regression feature, a fully connected layer is utilized to output the accurate spine indices estimation. Results Experiments on the open‐access Lumbar Spine MRI data set show that SGRNet achieves state‐of‐the‐art performance with a mean absolute error of 0.49 mm and mean Pearson correlation coefficient of 0.956 for four indices estimation. Conclusions The proposed SGAM in SGRNet is capable of improving the performance of spine indices measurement by focusing on the task‐specific region and feature channel under the guidance of the segmentation task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LaFee完成签到,获得积分10
1秒前
花花发布了新的文献求助10
1秒前
CipherSage应助BingHe采纳,获得10
1秒前
pearl发布了新的文献求助10
1秒前
只要平凡完成签到,获得积分10
2秒前
北过居庸完成签到,获得积分10
2秒前
3秒前
我是老大应助坚强百褶裙采纳,获得10
3秒前
3秒前
3秒前
4秒前
blablawindy发布了新的文献求助10
4秒前
4秒前
浮游应助mumumuzzz采纳,获得10
4秒前
张昭蓉完成签到,获得积分10
4秒前
5秒前
LeeWX完成签到,获得积分20
5秒前
6秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
奋斗的若云完成签到,获得积分10
8秒前
8秒前
anton完成签到,获得积分10
8秒前
单纯的又菱完成签到,获得积分10
8秒前
8秒前
小脑袋发布了新的文献求助10
8秒前
共享精神应助鲜艳的手链采纳,获得10
9秒前
Owen应助hhh采纳,获得10
9秒前
忽闻水完成签到,获得积分10
9秒前
元谷雪发布了新的文献求助30
9秒前
彳亍1117发布了新的文献求助10
9秒前
潇洒闭月发布了新的文献求助10
9秒前
10秒前
泥撑完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
科研通AI6应助Chain采纳,获得10
11秒前
11秒前
流光发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794