AIOD-YOLO: an algorithm for object detection in low-altitude aerial images

计算机科学 目标检测 人工智能 计算机视觉 航空影像 特征(语言学) 对象(语法) 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Peng Yan,Yong Liu,Lu Lyu,Xianchong Xu,Bo Song,Fuqiang Wang
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (01) 被引量:5
标识
DOI:10.1117/1.jei.33.1.013023
摘要

Aerial image object detection has a wide range of application values in civilian or military fields. Due to its unique high-altitude imaging viewpoint and the multiangle shooting method, aerial images lead to problems, such as small objects being detected in the image, large variations in object scales, and dense distribution. To alleviate the above problems, we propose an improved aerial image object detection algorithm aerial images object detection based on YOLO (AIOD-YOLO) based on YOLOv8-s. First, we propose the multibranch contextual information aggregation module. It enhances the network's perception of small objects by associating object information with the surrounding environment, thereby compensating for the lack of feature information for small objects. In addition, we propose the multilayer feature cascade efficient aggregation network, which leverages multigradient flow fusion of features at different scales. This approach aids the network in capturing a wide range of scale information and effectively mitigates the issue of missed detections caused by variations in object scales. Finally, we propose the adaptive task alignment label assignment strategy to address the issue of dense object distribution. The strategy incorporates the cosine similarity calculation to assess alignment globally and simultaneously adjusts the weights of positive and negative samples. We optimize the precision of label assignment for dense objects in aerial images, effectively resolving the challenges posed by their close proximity. The experiments on the VisDrone dataset demonstrate that AIOD-YOLO achieves a significant 7.2% improvement in mAP compared to the baseline model YOLOv8-s. The mAP0.5 of AIOD-YOLO is also improved by 14.1%, 7.9%, and 7.5% on SeaDronesSee v2, AI-TOD, and TinyPerson datasets, respectively, which validates the generalization of our proposed algorithm. AIOD-YOLO offers a superior information processing approach for tasks related to aerial image object detection in both civilian and military applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助毛绒绒窝铺采纳,获得10
刚刚
刚刚
NXK发布了新的文献求助10
1秒前
aiw完成签到,获得积分10
1秒前
YDQ完成签到,获得积分10
1秒前
1秒前
容荣发布了新的文献求助20
1秒前
ZhaoCun完成签到 ,获得积分10
2秒前
2秒前
YunZeng发布了新的文献求助10
3秒前
Dr.lee完成签到,获得积分10
3秒前
桐桐应助果蝇之母采纳,获得10
3秒前
丘比特应助逍遥采纳,获得10
4秒前
5秒前
7秒前
bkagyin应助友好的鲜花采纳,获得10
7秒前
NexusExplorer应助顺心一凤采纳,获得10
8秒前
8秒前
导师老八发布了新的文献求助10
9秒前
长情宛儿完成签到,获得积分10
10秒前
昧冒冰发布了新的文献求助10
12秒前
13秒前
澄明的晨星完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
舒适的流沙完成签到,获得积分20
16秒前
李健应助昏睡的以寒采纳,获得10
17秒前
今后应助颖南婉采纳,获得10
17秒前
宣孤菱发布了新的文献求助10
18秒前
18秒前
19秒前
顺心一凤发布了新的文献求助10
19秒前
FashionBoy应助弄香采纳,获得10
20秒前
科研通AI5应助娇气的背包采纳,获得10
20秒前
20秒前
顺利兰发布了新的文献求助10
20秒前
21秒前
xz发布了新的文献求助10
21秒前
浮游应助莫封叶采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4913842
求助须知:如何正确求助?哪些是违规求助? 4188429
关于积分的说明 13007911
捐赠科研通 3957127
什么是DOI,文献DOI怎么找? 2169546
邀请新用户注册赠送积分活动 1187932
关于科研通互助平台的介绍 1095439