AIOD-YOLO: an algorithm for object detection in low-altitude aerial images

计算机科学 目标检测 人工智能 计算机视觉 航空影像 特征(语言学) 对象(语法) 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Yan Peng,Yong Liu,Lu Lyu,Xianchong Xu,Bo Song,Fuqiang Wang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (01) 被引量:1
标识
DOI:10.1117/1.jei.33.1.013023
摘要

Aerial image object detection has a wide range of application values in civilian or military fields. Due to its unique high-altitude imaging viewpoint and the multiangle shooting method, aerial images lead to problems, such as small objects being detected in the image, large variations in object scales, and dense distribution. To alleviate the above problems, we propose an improved aerial image object detection algorithm aerial images object detection based on YOLO (AIOD-YOLO) based on YOLOv8-s. First, we propose the multibranch contextual information aggregation module. It enhances the network's perception of small objects by associating object information with the surrounding environment, thereby compensating for the lack of feature information for small objects. In addition, we propose the multilayer feature cascade efficient aggregation network, which leverages multigradient flow fusion of features at different scales. This approach aids the network in capturing a wide range of scale information and effectively mitigates the issue of missed detections caused by variations in object scales. Finally, we propose the adaptive task alignment label assignment strategy to address the issue of dense object distribution. The strategy incorporates the cosine similarity calculation to assess alignment globally and simultaneously adjusts the weights of positive and negative samples. We optimize the precision of label assignment for dense objects in aerial images, effectively resolving the challenges posed by their close proximity. The experiments on the VisDrone dataset demonstrate that AIOD-YOLO achieves a significant 7.2% improvement in mAP compared to the baseline model YOLOv8-s. The mAP0.5 of AIOD-YOLO is also improved by 14.1%, 7.9%, and 7.5% on SeaDronesSee v2, AI-TOD, and TinyPerson datasets, respectively, which validates the generalization of our proposed algorithm. AIOD-YOLO offers a superior information processing approach for tasks related to aerial image object detection in both civilian and military applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肉肉小白完成签到,获得积分10
1秒前
dichunxia完成签到,获得积分10
3秒前
4秒前
5秒前
azur完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
Hui_2023发布了新的文献求助10
7秒前
大个应助端庄的小翠采纳,获得10
8秒前
搜集达人应助默默的以松采纳,获得10
8秒前
9秒前
豪哥大大完成签到,获得积分20
9秒前
留影完成签到,获得积分10
9秒前
一二一发布了新的文献求助10
10秒前
Bluebulu完成签到 ,获得积分10
10秒前
留影发布了新的文献求助10
12秒前
小兔发布了新的文献求助10
12秒前
12秒前
Ava应助平淡夏云采纳,获得10
13秒前
隐形如柏完成签到,获得积分10
13秒前
julia完成签到,获得积分10
14秒前
小二郎应助小羊羔子采纳,获得10
14秒前
吉祥财子完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
FashionBoy应助热情的橘子采纳,获得10
16秒前
充电宝应助务实谷秋采纳,获得10
17秒前
abao完成签到 ,获得积分10
17秒前
MOON完成签到,获得积分10
17秒前
Jokic完成签到,获得积分10
18秒前
18秒前
18秒前
爱静静应助吉祥财子采纳,获得10
19秒前
20秒前
san心心发布了新的文献求助10
20秒前
JamesPei应助湫89757采纳,获得10
20秒前
科研小狗完成签到 ,获得积分10
20秒前
孤独靖柏完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808900
关于积分的说明 7878979
捐赠科研通 2467322
什么是DOI,文献DOI怎么找? 1313355
科研通“疑难数据库(出版商)”最低求助积分说明 630395
版权声明 601919