AIOD-YOLO: an algorithm for object detection in low-altitude aerial images

计算机科学 目标检测 人工智能 计算机视觉 航空影像 特征(语言学) 对象(语法) 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Peng Yan,Yong Liu,Lu Lyu,Xianchong Xu,Bo Song,Fuqiang Wang
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (01) 被引量:4
标识
DOI:10.1117/1.jei.33.1.013023
摘要

Aerial image object detection has a wide range of application values in civilian or military fields. Due to its unique high-altitude imaging viewpoint and the multiangle shooting method, aerial images lead to problems, such as small objects being detected in the image, large variations in object scales, and dense distribution. To alleviate the above problems, we propose an improved aerial image object detection algorithm aerial images object detection based on YOLO (AIOD-YOLO) based on YOLOv8-s. First, we propose the multibranch contextual information aggregation module. It enhances the network's perception of small objects by associating object information with the surrounding environment, thereby compensating for the lack of feature information for small objects. In addition, we propose the multilayer feature cascade efficient aggregation network, which leverages multigradient flow fusion of features at different scales. This approach aids the network in capturing a wide range of scale information and effectively mitigates the issue of missed detections caused by variations in object scales. Finally, we propose the adaptive task alignment label assignment strategy to address the issue of dense object distribution. The strategy incorporates the cosine similarity calculation to assess alignment globally and simultaneously adjusts the weights of positive and negative samples. We optimize the precision of label assignment for dense objects in aerial images, effectively resolving the challenges posed by their close proximity. The experiments on the VisDrone dataset demonstrate that AIOD-YOLO achieves a significant 7.2% improvement in mAP compared to the baseline model YOLOv8-s. The mAP0.5 of AIOD-YOLO is also improved by 14.1%, 7.9%, and 7.5% on SeaDronesSee v2, AI-TOD, and TinyPerson datasets, respectively, which validates the generalization of our proposed algorithm. AIOD-YOLO offers a superior information processing approach for tasks related to aerial image object detection in both civilian and military applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
<小天才>发布了新的文献求助10
1秒前
1秒前
钦林发布了新的文献求助10
4秒前
4秒前
raptor发布了新的文献求助10
7秒前
深味i完成签到,获得积分10
8秒前
11完成签到,获得积分20
9秒前
9秒前
10秒前
12秒前
13秒前
汉堡包应助小羊采纳,获得10
14秒前
15秒前
15秒前
司空豁发布了新的文献求助10
15秒前
我是老大应助南宫封伦采纳,获得10
15秒前
追寻奄发布了新的文献求助10
17秒前
Vernon发布了新的文献求助30
17秒前
17秒前
18秒前
涵泽完成签到,获得积分10
18秒前
情怀应助摘星星吗采纳,获得30
18秒前
看文献看到秃头完成签到,获得积分10
20秒前
1337003319发布了新的文献求助10
20秒前
耍酷的莫言完成签到 ,获得积分20
20秒前
21秒前
22秒前
23秒前
23秒前
123zyx完成签到 ,获得积分10
24秒前
25秒前
酷波er应助ljw采纳,获得10
27秒前
佟语雪完成签到,获得积分10
27秒前
28秒前
Bella发布了新的文献求助30
28秒前
小羊发布了新的文献求助10
29秒前
zz发布了新的文献求助30
31秒前
32秒前
可爱寄松发布了新的文献求助10
32秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959733
求助须知:如何正确求助?哪些是违规求助? 3506004
关于积分的说明 11127299
捐赠科研通 3237957
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803000