Mo Doping to Modify Lattice and Morphology of the LiNi0.9Co0.05Mn0.05O2 Cathode toward High-Efficient Lithium-Ion Storage

材料科学 阴极 兴奋剂 电解质 锂(药物) 化学工程 阳极 电流密度 容量损失 纳米技术 电极 光电子学 物理化学 量子力学 医学 物理 工程类 内分泌学 化学
作者
Liang Qiao,Qi You,X. Ben Wu,Huihua Min,Xiaomin Liu,Hui Yang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (4): 4772-4783 被引量:7
标识
DOI:10.1021/acsami.3c16475
摘要

The Ni-rich Co-poor layered cathode (LiNixCoyMn1–x–yO2, x ≥ 0.9) is a candidate for the next-generation lithium-ion batteries due to its high specific capacity and low cost. However, the inherent structural instability and slow kinetics of Li+ migration hinder their large-scale application. Mo doping is proposed to enhance the crystal structure stability of LiNi0.9Co0.05Mn0.05O2 and to ensure the preservation of the spherical secondary particles after the cycle. The characterization results indicate that Mo doping not only significantly relieves the lattice strain accompanied by H2 → H3 phase transition but also alleviates particle stress accumulation to avoid pulverization. The Mo-modification allows the generation of uniform fine primary particulates and further agglomeration into the smooth secondary particles to inhibit electrolyte penetration. Hence, the Mo-modified sample NCM90-1%Mo displays an excellent capacity retention of 85.9% after 200 cycles at 0.5 C current density, which is 23.8% higher than that of the pristine NCM90. In addition, with the expansion of the Li slab to accelerate Li+ diffusion and the fine primary particles to shorten the Li+ pathway, the NCM90-1%Mo sample exhibits a high discharge capacity of 150 mAh g–1 at 5 C current density. This work provides a new thought for the design and construction of high-capacity cathode materials for the next-generation lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MADKAI发布了新的文献求助10
刚刚
刚刚
117发布了新的文献求助10
刚刚
1秒前
1秒前
酶没美镁完成签到,获得积分10
1秒前
小二郎应助Rui采纳,获得10
1秒前
Libra完成签到,获得积分10
2秒前
雪儿发布了新的文献求助30
2秒前
无悔呀发布了新的文献求助10
2秒前
小巧的可仁完成签到 ,获得积分10
2秒前
2秒前
zhao完成签到,获得积分10
3秒前
masu发布了新的文献求助10
3秒前
冷酷尔琴发布了新的文献求助10
4秒前
Ll发布了新的文献求助10
4秒前
优雅山柏完成签到,获得积分10
4秒前
XinyiZhang发布了新的文献求助10
4秒前
小蘑菇应助yangyang采纳,获得10
4秒前
慕青应助欢欢采纳,获得10
5秒前
小憩完成签到,获得积分10
5秒前
南乔发布了新的文献求助10
5秒前
张静静发布了新的文献求助10
6秒前
云儿完成签到,获得积分10
6秒前
淡淡的洋葱完成签到,获得积分10
6秒前
小洲王先生完成签到,获得积分10
7秒前
7秒前
dd完成签到,获得积分10
7秒前
7秒前
8秒前
CCL应助kk2024采纳,获得50
8秒前
wjs0406完成签到,获得积分10
8秒前
自爱悠然发布了新的文献求助10
8秒前
贺雪完成签到,获得积分10
9秒前
9秒前
玉yu发布了新的文献求助10
10秒前
深情秋刀鱼完成签到,获得积分10
10秒前
星辰大海应助冷酷尔琴采纳,获得10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740