A Novel Sequence-to-Sequence-Based Deep Learning Model for Multistep Load Forecasting

计算机科学 自回归积分移动平均 水准点(测量) 块(置换群论) 人工神经网络 自回归模型 序列(生物学) 深度学习 人工智能 时间序列 循环神经网络 过程(计算) 机器学习 数据挖掘 计量经济学 几何学 数学 大地测量学 生物 经济 遗传学 地理 操作系统
作者
Renzhi Lu,Ruichang Bai,Ruidong Li,Lijun Zhu,Mingyang Sun,Feng Xiao,Dong Wang,Huaming Wu,Yuemin Ding
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2023.3329466
摘要

Load forecasting is critical to the task of energy management in power systems, for example, balancing supply and demand and minimizing energy transaction costs. There are many approaches used for load forecasting such as the support vector regression (SVR), the autoregressive integrated moving average (ARIMA), and neural networks, but most of these methods focus on single-step load forecasting, whereas multistep load forecasting can provide better insights for optimizing the energy resource allocation and assisting the decision-making process. In this work, a novel sequence-to-sequence (Seq2Seq)-based deep learning model based on a time series decomposition strategy for multistep load forecasting is proposed. The model consists of a series of basic blocks, each of which includes one encoder and two decoders; and all basic blocks are connected by residuals. In the inner of each basic block, the encoder is realized by temporal convolution network (TCN) for its benefit of parallel computing, and the decoder is implemented by long short-term memory (LSTM) neural network to predict and estimate time series. During the forecasting process, each basic block is forecasted individually. The final forecasted result is the aggregation of the predicted results in all basic blocks. Several cases within multiple real-world datasets are conducted to evaluate the performance of the proposed model. The results demonstrate that the proposed model achieves the best accuracy compared with several benchmark models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
细雨带风吹完成签到,获得积分10
1秒前
李李发布了新的文献求助10
1秒前
ZAPAR发布了新的文献求助10
1秒前
自由宛筠完成签到,获得积分10
3秒前
3秒前
4秒前
优雅狗发布了新的文献求助10
4秒前
頋菟发布了新的文献求助10
5秒前
5秒前
殷勤的可兰完成签到,获得积分10
6秒前
建新发布了新的文献求助10
6秒前
6秒前
结实涑发布了新的文献求助10
7秒前
爆米花应助单纯的乌冬面采纳,获得10
7秒前
7秒前
脆脆鲨鱼完成签到,获得积分10
7秒前
Jasper应助麦斯采纳,获得30
8秒前
脑洞疼应助汤谷栽扶桑采纳,获得30
8秒前
Zac应助你好采纳,获得10
9秒前
[[完成签到 ,获得积分10
10秒前
ty完成签到,获得积分10
10秒前
Eliauk完成签到,获得积分10
10秒前
小李新人完成签到 ,获得积分10
10秒前
11秒前
12秒前
平常芷波发布了新的文献求助10
12秒前
彳亍发布了新的文献求助10
12秒前
华仔应助结实涑采纳,获得10
13秒前
科研狗完成签到,获得积分10
13秒前
JamesPei应助体贴半仙采纳,获得10
13秒前
斯文败类应助不如一默采纳,获得10
13秒前
sougardenist完成签到,获得积分10
14秒前
李李完成签到,获得积分10
14秒前
传奇3应助KDS采纳,获得10
15秒前
15秒前
SciGPT应助冷酸灵采纳,获得10
15秒前
李w发布了新的文献求助10
15秒前
16秒前
SYLH应助怡宝采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555160
求助须知:如何正确求助?哪些是违规求助? 3130863
关于积分的说明 9388950
捐赠科研通 2830329
什么是DOI,文献DOI怎么找? 1555932
邀请新用户注册赠送积分活动 726345
科研通“疑难数据库(出版商)”最低求助积分说明 715734