脑淀粉样血管病
神经退行性变
神经炎症
内皮功能障碍
细胞生物学
β淀粉样蛋白
血脑屏障
淀粉样蛋白(真菌学)
生物
化学
神经科学
医学
炎症
疾病
免疫学
病理
痴呆
内分泌学
中枢神经系统
作者
Yuhuan Li,Nengyi Ni,Myeongsang Lee,Wei Wei,Nikolaos K. Andrikopoulos,Aleksandr Käkinen,Thomas P. Davis,Yang Song,Feng Ding,David Tai Leong,Pu Chun Ke
标识
DOI:10.1038/s41467-024-44814-1
摘要
Abstract Alzheimer’s disease (AD) is a major cause of dementia debilitating the global ageing population. Current understanding of the AD pathophysiology implicates the aggregation of amyloid beta (Aβ) as causative to neurodegeneration, with tauopathies, apolipoprotein E and neuroinflammation considered as other major culprits. Curiously, vascular endothelial barrier dysfunction is strongly associated with Aβ deposition and 80-90% AD subjects also experience cerebral amyloid angiopathy. Here we show amyloid protein-induced endothelial leakiness (APEL) in human microvascular endothelial monolayers as well as in mouse cerebral vasculature. Using signaling pathway assays and discrete molecular dynamics, we revealed that the angiopathy first arose from a disruption to vascular endothelial (VE)-cadherin junctions exposed to the nanoparticulates of Aβ oligomers and seeds, preceding the earlier implicated proinflammatory and pro-oxidative stressors to endothelial leakiness. These findings were analogous to nanomaterials-induced endothelial leakiness (NanoEL), a major phenomenon in nanomedicine depicting the paracellular transport of anionic inorganic nanoparticles in the vasculature. As APEL also occurred in vitro with the oligomers and seeds of alpha synuclein, this study proposes a paradigm for elucidating the vascular permeation, systemic spread, and cross-seeding of amyloid proteins that underlie the pathogeneses of AD and Parkinson’s disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI