Multi-Scale Fusion and Decomposition Network for Single Image Deraining

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 计算机视觉
作者
Qiong Wang,Kui Jiang,Zheng Wang,Wenqi Ren,Jianhui Zhang,Chia‐Wen Lin
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 191-204 被引量:13
标识
DOI:10.1109/tip.2023.3334556
摘要

Convolutional neural networks (CNNs) and self-attention (SA) have demonstrated remarkable success in low-level vision tasks, such as image super-resolution, deraining, and dehazing. The former excels in acquiring local connections with translation equivariance, while the latter is better at capturing long-range dependencies. However, both CNNs and Transformers suffer from individual limitations, such as limited receptive field and weak diversity representation of CNNs during low efficiency and weak local relation learning of SA. To this end, we propose a multi-scale fusion and decomposition network (MFDNet) for rain perturbation removal, which unifies the merits of these two architectures while maintaining both effectiveness and efficiency. To achieve the decomposition and association of rain and rain-free features, we introduce an asymmetrical scheme designed as a dual-path mutual representation network that enables iterative refinement. Additionally, we incorporate high-efficiency convolutions throughout the network and use resolution rescaling to balance computational complexity with performance. Comprehensive evaluations show that the proposed approach outperforms most of the latest SOTA deraining methods and is versatile and robust in various image restoration tasks, including underwater image enhancement, image dehazing, and low-light image enhancement. The source codes and pretrained models are available at https://github.com/qwangg/MFDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实的半山完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
研友_Lw44Gn完成签到,获得积分0
3秒前
口香糖发布了新的文献求助10
3秒前
苗苗完成签到,获得积分10
4秒前
阿高完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
8秒前
慕青应助啦啦啦啦采纳,获得30
8秒前
范月月完成签到 ,获得积分10
9秒前
彭于彦祖给肽研员的求助进行了留言
10秒前
口香糖完成签到,获得积分10
10秒前
czwu发布了新的文献求助10
10秒前
11秒前
12秒前
乐观的丹琴完成签到,获得积分10
12秒前
斯文败类应助研友_nVqwxL采纳,获得10
14秒前
热心的诗蕊完成签到,获得积分10
18秒前
激昂的微笑完成签到,获得积分10
18秒前
彭于晏应助无情的咖啡豆采纳,获得10
18秒前
花花发布了新的文献求助10
20秒前
科研通AI2S应助大气建辉采纳,获得10
21秒前
微微发布了新的文献求助30
21秒前
斯文败类应助陶醉的夜绿采纳,获得10
22秒前
1234发布了新的文献求助10
23秒前
Fjun完成签到,获得积分20
23秒前
25秒前
单薄碧灵完成签到 ,获得积分10
25秒前
MaFY完成签到,获得积分10
27秒前
简单绯应助药药采纳,获得10
27秒前
27秒前
八二力完成签到 ,获得积分10
28秒前
28秒前
29秒前
30秒前
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299776
求助须知:如何正确求助?哪些是违规求助? 2934644
关于积分的说明 8470036
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574