Multi-Scale Fusion and Decomposition Network for Single Image Deraining

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 计算机视觉
作者
Qiong Wang,Kui Jiang,Zheng Wang,Wenqi Ren,Jianhui Zhang,Chia‐Wen Lin
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 191-204 被引量:15
标识
DOI:10.1109/tip.2023.3334556
摘要

Convolutional neural networks (CNNs) and self-attention (SA) have demonstrated remarkable success in low-level vision tasks, such as image super-resolution, deraining, and dehazing. The former excels in acquiring local connections with translation equivariance, while the latter is better at capturing long-range dependencies. However, both CNNs and Transformers suffer from individual limitations, such as limited receptive field and weak diversity representation of CNNs during low efficiency and weak local relation learning of SA. To this end, we propose a multi-scale fusion and decomposition network (MFDNet) for rain perturbation removal, which unifies the merits of these two architectures while maintaining both effectiveness and efficiency. To achieve the decomposition and association of rain and rain-free features, we introduce an asymmetrical scheme designed as a dual-path mutual representation network that enables iterative refinement. Additionally, we incorporate high-efficiency convolutions throughout the network and use resolution rescaling to balance computational complexity with performance. Comprehensive evaluations show that the proposed approach outperforms most of the latest SOTA deraining methods and is versatile and robust in various image restoration tasks, including underwater image enhancement, image dehazing, and low-light image enhancement. The source codes and pretrained models are available at https://github.com/qwangg/MFDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青衣北风发布了新的文献求助10
刚刚
feng发布了新的文献求助10
刚刚
guygun发布了新的文献求助10
3秒前
小灰灰完成签到,获得积分10
4秒前
4秒前
海鸥海鸥发布了新的文献求助10
5秒前
青衣北风完成签到,获得积分10
5秒前
7秒前
MasterE完成签到,获得积分10
8秒前
我的小伙伴应助feng采纳,获得10
8秒前
善学以致用应助feng采纳,获得10
8秒前
9秒前
9秒前
gaoww发布了新的文献求助10
9秒前
小二发布了新的文献求助10
13秒前
solobang发布了新的文献求助10
14秒前
CodeCraft应助Jocelyn7采纳,获得10
14秒前
秋之月完成签到,获得积分10
14秒前
15秒前
cheche关注了科研通微信公众号
15秒前
16秒前
科研小民工应助kento采纳,获得50
17秒前
完美世界应助小萌采纳,获得10
18秒前
18秒前
gaoww完成签到,获得积分10
18秒前
19秒前
WZ0904发布了新的文献求助10
19秒前
19秒前
lab完成签到 ,获得积分0
19秒前
小蘑菇应助今今采纳,获得10
20秒前
CodeCraft应助秋之月采纳,获得10
20秒前
I1waml完成签到 ,获得积分10
20秒前
20秒前
guygun完成签到,获得积分10
20秒前
zho发布了新的文献求助10
21秒前
独特亦旋发布了新的文献求助10
21秒前
22秒前
研友_LOqqmZ完成签到,获得积分10
23秒前
23秒前
英俊的铭应助文献查找采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824