Multi-Scale Fusion and Decomposition Network for Single Image Deraining

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 计算机视觉
作者
Qiong Wang,Kui Jiang,Zheng Wang,Wenqi Ren,Jianhui Zhang,Chia‐Wen Lin
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 191-204 被引量:15
标识
DOI:10.1109/tip.2023.3334556
摘要

Convolutional neural networks (CNNs) and self-attention (SA) have demonstrated remarkable success in low-level vision tasks, such as image super-resolution, deraining, and dehazing. The former excels in acquiring local connections with translation equivariance, while the latter is better at capturing long-range dependencies. However, both CNNs and Transformers suffer from individual limitations, such as limited receptive field and weak diversity representation of CNNs during low efficiency and weak local relation learning of SA. To this end, we propose a multi-scale fusion and decomposition network (MFDNet) for rain perturbation removal, which unifies the merits of these two architectures while maintaining both effectiveness and efficiency. To achieve the decomposition and association of rain and rain-free features, we introduce an asymmetrical scheme designed as a dual-path mutual representation network that enables iterative refinement. Additionally, we incorporate high-efficiency convolutions throughout the network and use resolution rescaling to balance computational complexity with performance. Comprehensive evaluations show that the proposed approach outperforms most of the latest SOTA deraining methods and is versatile and robust in various image restoration tasks, including underwater image enhancement, image dehazing, and low-light image enhancement. The source codes and pretrained models are available at https://github.com/qwangg/MFDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lilian完成签到,获得积分10
刚刚
无辜的醉波关注了科研通微信公众号
刚刚
Lucas应助晓畅采纳,获得10
刚刚
酷酷的冰真应助eve采纳,获得10
1秒前
超神完成签到,获得积分0
1秒前
2秒前
共享精神应助lh采纳,获得10
2秒前
3秒前
huohuo143完成签到,获得积分10
3秒前
Chen发布了新的文献求助10
4秒前
健壮听露发布了新的文献求助10
4秒前
火山上吃烧烤完成签到,获得积分10
4秒前
4秒前
zkk完成签到,获得积分10
5秒前
赵ying完成签到,获得积分20
5秒前
充电宝应助独特的兰采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助zh采纳,获得10
7秒前
lilian发布了新的文献求助10
7秒前
7秒前
8秒前
123csdkvikd完成签到,获得积分20
8秒前
9秒前
Lane_Crumus完成签到,获得积分10
9秒前
打打应助加鲁鲁采纳,获得10
9秒前
Thea完成签到,获得积分10
9秒前
10秒前
陈小白完成签到,获得积分10
10秒前
党文英发布了新的文献求助10
10秒前
淡然觅荷完成签到 ,获得积分10
10秒前
归尘发布了新的文献求助10
10秒前
11秒前
柔弱紊发布了新的文献求助30
13秒前
13秒前
隐形的馒头完成签到,获得积分10
13秒前
万木春完成签到 ,获得积分10
13秒前
Tigher完成签到,获得积分20
14秒前
14秒前
14秒前
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199