亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Model-Assisted Multi-source Fusion Hypergraph Convolutional Neural Networks for intelligent few-shot fault diagnosis to Electro-Hydrostatic Actuator

卷积神经网络 超图 断层(地质) 计算机科学 执行机构 节点(物理) 人工智能 数据挖掘 实时计算 工程类 数学 结构工程 离散数学 地质学 地震学
作者
Xiaoli Zhao,Xingjun Zhu,Jiahui Liu,Yuanhao Hu,Tianyu Gao,Liyong Zhao,Jianyong Yao,Zheng Liu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:104: 102186-102186 被引量:46
标识
DOI:10.1016/j.inffus.2023.102186
摘要

Electro-Hydrostatic Actuator (EHA) is a critical electro-hydraulic actuator system widely used in aerospace equipment. To ensure its normal operation, the intelligent fault diagnosis of the EHA system has gained increasing attention. However, the EHA exhibits strong nonlinearity, high structural complexity, and difficulty obtaining fault samples. A Model-Assisted Multi-source Fusion Hypergraph Convolutional Neural Network (MAMF-HGCN) is proposed to address the few-shot intelligent fault diagnosis of EHA. Specifically, the fault data obtained from the hydraulic simulation model is used to establish the relationship among each channel signal. This assists in constructing a hypergraph structure for actual multi-source fault data under limited samples. Each node in the hypergraph employs message transmission to fuse signals from different channels. Subsequently, the hypergraph data are input into the constructed hypergraph convolutional neural network to perform fault classification. Finally, validating the EHA hydraulic system test rig from Nanjing University of Science and Technology illustrates the method's effectiveness in diagnosing hydraulic system problems under limited fault samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美满尔蓝完成签到,获得积分10
18秒前
25秒前
31秒前
有趣的银发布了新的文献求助10
31秒前
念辰关注了科研通微信公众号
38秒前
38秒前
阿芙乐尔发布了新的文献求助10
44秒前
yiban完成签到 ,获得积分10
1分钟前
1分钟前
zyj发布了新的文献求助10
1分钟前
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助zyj采纳,获得10
1分钟前
uto完成签到,获得积分10
1分钟前
2分钟前
vicky发布了新的文献求助10
2分钟前
懒洋洋发布了新的文献求助10
2分钟前
2分钟前
耶风完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
气945完成签到,获得积分10
2分钟前
靓丽的魔镜完成签到,获得积分10
2分钟前
丘比特应助气945采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
TXZ06完成签到,获得积分10
3分钟前
思源应助气945采纳,获得10
3分钟前
3分钟前
ppl发布了新的文献求助30
3分钟前
李爱国应助我能读懂文献采纳,获得10
3分钟前
ppl完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232655
求助须知:如何正确求助?哪些是违规求助? 4401931
关于积分的说明 13699464
捐赠科研通 4268321
什么是DOI,文献DOI怎么找? 2342519
邀请新用户注册赠送积分活动 1339526
关于科研通互助平台的介绍 1296223