Fast identification of machine tool spindle system temperature rise based on multi-model fusion and improved D-S evidence theory

融合 机床 鉴定(生物学) 系统标识 计算机科学 工程类 机械工程 数据挖掘 生物 哲学 语言学 植物 度量(数据仓库)
作者
Yushen Chen,Chengzhi Fang,Xiaolei Deng,Xiaoliang Lin,Junjian Zheng,Yue Han,Jianqiang Zhou
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE Publishing]
卷期号:238 (13): 6518-6533
标识
DOI:10.1177/09544062231224905
摘要

Thermal equilibrium test is the key means to obtain the thermal characteristics of machine tools. In order to shorten the test period and reduce the research and development cost, a novel fast temperature rise identification method for machine tool spindle systems is proposed. The existing prediction identification methods ignore the limitation of the single prediction model, leading to large error fluctuations in different environments. In this study, various intelligent prediction models are combined with the improved D-S evidence theory to improve the accuracy and robustness of the prediction. Firstly, based on the virtual prediction, the evidence identification framework is established through the multiple evaluations of the data information in the evidence segment. Then, the weight allocation of each basic prediction model is carried out by the evidence combination theory. In this process, the evidence identification framework is reconstructed according to the improved strategy to avoid the high conflict problem in classical evidence theory. Finally, the fusion prediction of multiple models can be realized. The VM-850L machining center was selected as the research object for the thermal equilibrium test to evaluate the proposed method. The results show that the proposed multi-model fusion prediction method can accurately predict the temperature rise of selected points in a short time. Moreover, the prediction accuracy is significantly improved compared with the traditional single model. The proposed method has good universality and is expected to be popularized and applied more widely.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武鞅完成签到,获得积分10
1秒前
1秒前
1秒前
redking发布了新的文献求助30
2秒前
轻松的惜芹应助lunjianchi采纳,获得10
3秒前
科研通AI5应助Liixy采纳,获得10
4秒前
4秒前
6秒前
嗯对发布了新的文献求助10
7秒前
Lily完成签到,获得积分10
8秒前
dagongren完成签到,获得积分10
8秒前
cassie发布了新的文献求助10
8秒前
帅气完成签到,获得积分10
10秒前
gc发布了新的文献求助10
10秒前
欢呼的明雪完成签到,获得积分10
12秒前
13秒前
搜集达人应助cassie采纳,获得10
14秒前
舍予有服完成签到,获得积分10
17秒前
pp完成签到,获得积分10
18秒前
陈兵发布了新的文献求助10
18秒前
北海未暖完成签到,获得积分10
19秒前
唐唐发布了新的文献求助10
20秒前
mc应助rrrrr采纳,获得10
21秒前
yaoweiqi完成签到,获得积分10
22秒前
25秒前
lbyscu完成签到 ,获得积分10
27秒前
疯狂的炳发布了新的文献求助10
28秒前
29秒前
维尼发布了新的文献求助10
33秒前
科目三应助xtt采纳,获得10
34秒前
多情鑫鹏发布了新的文献求助10
35秒前
大佬完成签到,获得积分10
35秒前
35秒前
完美世界应助唐唐采纳,获得10
36秒前
36秒前
铁男卡卡罗特完成签到,获得积分10
37秒前
38秒前
大佬发布了新的文献求助10
38秒前
40秒前
Jasper应助科研通管家采纳,获得10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517