已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fast identification of machine tool spindle system temperature rise based on multi-model fusion and improved D-S evidence theory

融合 机床 鉴定(生物学) 系统标识 计算机科学 工程类 机械工程 数据挖掘 生物 哲学 语言学 植物 度量(数据仓库)
作者
Yushen Chen,Chengzhi Fang,Xiaolei Deng,Xiaoliang Lin,Junjian Zheng,Yue Han,Jianqiang Zhou
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:238 (13): 6518-6533
标识
DOI:10.1177/09544062231224905
摘要

Thermal equilibrium test is the key means to obtain the thermal characteristics of machine tools. In order to shorten the test period and reduce the research and development cost, a novel fast temperature rise identification method for machine tool spindle systems is proposed. The existing prediction identification methods ignore the limitation of the single prediction model, leading to large error fluctuations in different environments. In this study, various intelligent prediction models are combined with the improved D-S evidence theory to improve the accuracy and robustness of the prediction. Firstly, based on the virtual prediction, the evidence identification framework is established through the multiple evaluations of the data information in the evidence segment. Then, the weight allocation of each basic prediction model is carried out by the evidence combination theory. In this process, the evidence identification framework is reconstructed according to the improved strategy to avoid the high conflict problem in classical evidence theory. Finally, the fusion prediction of multiple models can be realized. The VM-850L machining center was selected as the research object for the thermal equilibrium test to evaluate the proposed method. The results show that the proposed multi-model fusion prediction method can accurately predict the temperature rise of selected points in a short time. Moreover, the prediction accuracy is significantly improved compared with the traditional single model. The proposed method has good universality and is expected to be popularized and applied more widely.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助xiaofeiyan采纳,获得10
1秒前
低空飞行发布了新的文献求助10
1秒前
今后应助默默的采纳,获得10
3秒前
Ryan完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
沉默发布了新的文献求助10
7秒前
天天快乐应助开放的千青采纳,获得10
7秒前
ivar完成签到,获得积分10
9秒前
10秒前
佳期发布了新的文献求助10
10秒前
所所应助byto采纳,获得10
10秒前
彭于晏应助tjnusq采纳,获得10
12秒前
阿正嗖啪完成签到,获得积分10
13秒前
13秒前
王贵发发布了新的文献求助10
15秒前
半青一江完成签到 ,获得积分10
19秒前
李健应助卡卡西采纳,获得50
19秒前
请问你认识wkk吗完成签到,获得积分10
20秒前
赘婿应助酷酷的大米采纳,获得30
20秒前
开心点完成签到 ,获得积分10
20秒前
20秒前
情怀应助充盈缺损采纳,获得10
24秒前
南川石发布了新的文献求助50
24秒前
25秒前
matinal发布了新的文献求助10
25秒前
Owen应助Bai采纳,获得10
30秒前
hao发布了新的文献求助10
30秒前
万能图书馆应助钙钛矿狗采纳,获得10
31秒前
刘刘完成签到 ,获得积分10
36秒前
37秒前
陈chen发布了新的文献求助10
37秒前
想毕业的猫猫完成签到,获得积分10
38秒前
yyds应助hao采纳,获得50
39秒前
wanci应助我又可以了采纳,获得30
40秒前
orixero应助XLT采纳,获得10
41秒前
拼搏映菡发布了新的文献求助10
43秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627439
求助须知:如何正确求助?哪些是违规求助? 4713759
关于积分的说明 14962257
捐赠科研通 4784702
什么是DOI,文献DOI怎么找? 2554869
邀请新用户注册赠送积分活动 1516352
关于科研通互助平台的介绍 1476696