Fast identification of machine tool spindle system temperature rise based on multi-model fusion and improved D-S evidence theory

融合 机床 鉴定(生物学) 系统标识 计算机科学 工程类 机械工程 数据挖掘 生物 哲学 语言学 植物 度量(数据仓库)
作者
Yushen Chen,Chengzhi Fang,Xiaolei Deng,Xiaoliang Lin,Junjian Zheng,Yue Han,Jianqiang Zhou
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science [SAGE]
卷期号:238 (13): 6518-6533
标识
DOI:10.1177/09544062231224905
摘要

Thermal equilibrium test is the key means to obtain the thermal characteristics of machine tools. In order to shorten the test period and reduce the research and development cost, a novel fast temperature rise identification method for machine tool spindle systems is proposed. The existing prediction identification methods ignore the limitation of the single prediction model, leading to large error fluctuations in different environments. In this study, various intelligent prediction models are combined with the improved D-S evidence theory to improve the accuracy and robustness of the prediction. Firstly, based on the virtual prediction, the evidence identification framework is established through the multiple evaluations of the data information in the evidence segment. Then, the weight allocation of each basic prediction model is carried out by the evidence combination theory. In this process, the evidence identification framework is reconstructed according to the improved strategy to avoid the high conflict problem in classical evidence theory. Finally, the fusion prediction of multiple models can be realized. The VM-850L machining center was selected as the research object for the thermal equilibrium test to evaluate the proposed method. The results show that the proposed multi-model fusion prediction method can accurately predict the temperature rise of selected points in a short time. Moreover, the prediction accuracy is significantly improved compared with the traditional single model. The proposed method has good universality and is expected to be popularized and applied more widely.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
田様应助Mera采纳,获得10
刚刚
田様应助SPRETEND采纳,获得10
1秒前
纯真寻冬完成签到,获得积分10
1秒前
会撒娇的天抒完成签到,获得积分10
2秒前
JamesPei应助张瑞雪采纳,获得10
2秒前
小猪佩奇发布了新的文献求助10
4秒前
科研通AI2S应助机智的思远采纳,获得10
5秒前
ZZ关注了科研通微信公众号
6秒前
小西发布了新的文献求助80
6秒前
乐观的樱笑靥完成签到,获得积分20
7秒前
无辜寄云完成签到,获得积分20
7秒前
luozhuang2023发布了新的文献求助10
9秒前
烟花应助陈隆采纳,获得10
10秒前
Lym关注了科研通微信公众号
10秒前
CCC完成签到 ,获得积分10
11秒前
maozhijiubai发布了新的文献求助10
12秒前
WPF完成签到,获得积分0
12秒前
12秒前
汉堡包应助一顿鸡米花采纳,获得10
14秒前
小猪佩奇完成签到,获得积分20
14秒前
xiaoru完成签到,获得积分10
15秒前
一只饺子应助孝顺的幼翠采纳,获得30
17秒前
Ripples发布了新的文献求助10
17秒前
yiyi完成签到 ,获得积分10
17秒前
斯文败类应助莫处何安人采纳,获得10
18秒前
Akim应助平常易烟采纳,获得10
18秒前
上官若男应助长情青烟采纳,获得10
20秒前
ZZ发布了新的文献求助10
21秒前
orixero应助优雅的雁凡采纳,获得10
22秒前
Ripples完成签到,获得积分10
23秒前
jekg完成签到,获得积分10
23秒前
sibo发布了新的文献求助10
25秒前
25秒前
华仔应助David采纳,获得10
25秒前
26秒前
hdisyd完成签到,获得积分10
28秒前
29秒前
罗山柳完成签到,获得积分10
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
美国体育史 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259657
求助须知:如何正确求助?哪些是违规求助? 2901203
关于积分的说明 8314378
捐赠科研通 2570696
什么是DOI,文献DOI怎么找? 1396601
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631727