医学
对比度(视觉)
冲程(发动机)
威尔科克森符号秩检验
改良兰金量表
概化理论
分割
缺血性中风
放射科
人工智能
缺血
曼惠特尼U检验
内科学
统计
工程类
机械工程
计算机科学
数学
作者
Sophie Ostmeier,Brian Axelrod,Yongkai Liu,Yannan Yu,Bin Jiang,Nicole Yuen,Benjamin Pulli,Benjamin F.J. Verhaaren,Hussam Kaka,Max Wintermark,Patrik Michel,Abdelkader Mahammedi,Christian Federau,Maarten G. Lansberg,Gregory W. Albers,Michael E. Moseley,G. Zaharchuk,Jeremy J. Heit
标识
DOI:10.1136/jnis-2023-021283
摘要
Outlining acutely infarcted tissue on non-contrast CT is a challenging task for which human inter-reader agreement is limited. We explored two different methods for training a supervised deep learning algorithm: one that used a segmentation defined by majority vote among experts and another that trained randomly on separate individual expert segmentations.
科研通智能强力驱动
Strongly Powered by AbleSci AI