佩多:嘘
复合数
材料科学
热电效应
热电发电机
碳纳米管
兴奋剂
复合材料
乙二醇
化学工程
纳米技术
光电子学
图层(电子)
物理
热力学
工程类
作者
Binjie Xia,Xiao‐Lei Shi,Li Zhang,Jia Luo,Wenyi Chen,Boxuan Hu,Tianyi Cao,Ting Wu,Wei‐Di Liu,Yanling Yang,Qingfeng Liu,Zhi‐Gang Chen
标识
DOI:10.1016/j.cej.2024.150305
摘要
To solve the long-lasting challenge of low thermoelectric performance of flexible thermoelectric device (F-TEG), in this work, we report a three-dimensional vertically structured F-TEG composed of flexible, stable, and high-performing p- and n-type single-walled carbon nanotube (SWCNT)-based composite films. The p-type SWCNT-based composite film exhibits a high room-temperature power factor of >500 μW m−1 K−2, benefiting from the effective de-doping of the hybridized poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS) using a binary co-doping agent composed of NaHCO3 and the polar solvent ethylene glycol (EG). Simultaneously, the n-type SWCNT-based film doped with the amine-rich electron donor polyethyleneimine (PEI) is prepared, exhibiting a high room-temperature power factor of 185.4 μW m−1 K−2 and excellent air stability. By employing flexible supporting foam, vertical p-n thermoelectric legs are realized, and the F-TEG based on these legs exhibits a maximum open-circuit voltage of 23.2 mV and a maximum output power of 2.6 μW at a temperature difference of 48 K, demonstrating a competitive normalized power density of >2.5 μW cm−2 K−2, which advances the low-power flexible wearable field.
科研通智能强力驱动
Strongly Powered by AbleSci AI