电解质
相间
材料科学
锂(药物)
分解
金属锂
离子
快离子导体
无机化学
化学工程
纳米技术
电极
有机化学
物理化学
化学
医学
遗传学
工程类
生物
内分泌学
作者
Mohammed Bin Jassar,Carine Michel,Sara Abada,Theodorus de Bruin,Sylvain Tant,Carlos Nieto‐Draghi,Stephan N. Steinmann
标识
DOI:10.1002/adfm.202313188
摘要
Abstract The solid electrolyte interphase (SEI) is a thin heterogeneous layer formed at the anode/electrolyte interface in lithium‐ion batteries as a consequence of the reduction of the electrolyte. The initial formation of the SEI inhibits the direct contact between the electrode and the electrolyte and thus protects the battery. However, the composition, structure, and size of the SEI evolve over time and the growth of the SEI is considered the primary mechanism leading to the gradual deterioration of the battery performance. Despite the importance of the SEI and its growth, the atomistic understanding of the underlying elementary reaction steps remains partial. Molecular modeling of the electrolyte decomposition is key to gain detailed insights that are complementary to experiments for the reactions occurring in this heterogenous interphase. In this perspective, the electron transport mechanisms are first described from the anode to the electrolyte through the SEI and highlight the importance of the inorganic/organic interface within the heterogeneous SEI: it is where the electrolyte decomposition reactions are likely to occur. Finally, a view is provided on the current progress on molecular modeling techniques (e.g., Density Functional Theory, force fields, machine learning potentials) of the SEI and the challenges each method faces.
科研通智能强力驱动
Strongly Powered by AbleSci AI