Channel attention & temporal attention based temporal convolutional network: A dual attention framework for remaining useful life prediction of the aircraft engines

涡扇发动机 对偶(语法数字) 钥匙(锁) 频道(广播) 断层(地质) 计算机科学 任务(项目管理) 集合(抽象数据类型) 人工智能 实时计算 数据挖掘 工程类 汽车工程 艺术 文学类 计算机网络 计算机安全 系统工程 地震学 程序设计语言 地质学
作者
Lin Lin,Jin‐Lei Wu,Song Fu,Sihao Zhang,Changsheng Tong,Lizheng Zu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:60: 102372-102372 被引量:51
标识
DOI:10.1016/j.aei.2024.102372
摘要

The health of the aircraft engines is of great concern. And it is a key task to predict the remaining useful life (RUL) of the aircraft engines accurately. However, there are still challenges in RUL prediction, such as the flaw in incomplete sensor signals acquired, difficulty in determining the importance of sensor signals, and neglect of the key time points with significant performance degradation information in the sensor signals when performing RUL prediction. To tackle these challenges, a dual attention framework named Channel Attention & Temporal Attention based Temporal Convolutional Network (CATA-TCN) is proposed for the RUL prediction of the aircraft engines. Specifically, channel attention is integrated into TCN to focus on sensor signals with critical impact on RUL prediction and suppressing unimportant ones in long-term horizon. Next, the processed sensor signals are fed into temporal attention module, which enhances the impact of the key time points and generates the critical degradation features. Finally, the CATA-TCN outputs the predicted RUL by performing non-linear mapping on the extracted features. Turbofan engine degradation simulation data set (C-MAPSS dataset) and real flight data are used to validate the CATA-TCN framework. The experimental results show that the proposed method is significantly more accurate on overall prediction performance (Score and RMSE) than other state-of-the-art methods, especially under changeable operation conditions and complex fault modes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孟孟1215发布了新的文献求助10
1秒前
好久不见发布了新的文献求助10
2秒前
斯文败类应助科研通管家采纳,获得30
2秒前
奥特超曼应助科研通管家采纳,获得10
2秒前
奥特超曼应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
娜娜发布了新的文献求助10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
Rondab应助科研通管家采纳,获得30
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
双楠应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
双楠应助科研通管家采纳,获得10
3秒前
3秒前
慕青应助是草莓采纳,获得10
4秒前
5秒前
myg8627完成签到,获得积分10
5秒前
稚久完成签到,获得积分10
5秒前
照云211完成签到 ,获得积分10
6秒前
孟孟1215完成签到,获得积分10
7秒前
今后应助淡定的半梦采纳,获得10
7秒前
myg8627发布了新的文献求助10
8秒前
霸气谷蕊完成签到,获得积分10
9秒前
云北梦南发布了新的文献求助10
9秒前
10秒前
领导范儿应助jessicazhong采纳,获得10
11秒前
why发布了新的文献求助10
12秒前
14秒前
皮蛋妹妹完成签到,获得积分10
14秒前
领导范儿应助罗氏集团采纳,获得10
14秒前
小马甲应助Pam采纳,获得10
16秒前
17秒前
18秒前
科研通AI2S应助做好助焊剂采纳,获得10
18秒前
灵泽发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075