Local Topology Constrained Point Cloud Registration in Building Information Modeling

点云 计算机科学 拓扑(电路) 刚性变换 公制(单位) 匹配(统计) 坐标系 特征(语言学) 变换矩阵 相似性(几何) 转化(遗传学) 计算机视觉 算法 人工智能 数学 工程类 语言学 运营管理 统计 哲学 物理 运动学 生物化学 经典力学 组合数学 化学 图像(数学) 基因
作者
Yazhou Liu,Hengyu Jiang,Georges Nader,Zheng Wu,Takrit Tanasnitikul,Pongsak Lasang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 4036-4046 被引量:1
标识
DOI:10.1109/jsen.2023.3341218
摘要

A new method is presented for point cloud registration which is an important process in Building Information Modelling (BIM). Unlike the general registration tasks, point cloud registration in BIM is challenging for two reasons: 1) The self-similarity of building structures increases the probability of mismatches (e.g., multiple windows/rooms may have similar geometry structures); 2) Hard boundaries (intersections between the planes) can provide important information for registration, but they cannot be effectively represented using point/line normal-based features because of definition ambiguity. To address these two issues, Local Topology Preserving (LTP) Module and Local Mesh Feature (LMF) are proposed. More specifically, LTP is based on the Euclidean metric preserving property of rigid transformation and encode this constrain in the process of self-similarity matrix multiplication to refine the matching results between the source and reference cloud; LMF combines geometric knowledge from point, line, and mesh levels to alleviate the impact of normal ambiguity. Experiments on general point clouds and architectural point clouds show that the proposed method is particularly robust to noise and has good generalization ability across different point cloud types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
谭平完成签到 ,获得积分10
刚刚
1秒前
淡定紫菱完成签到,获得积分10
1秒前
所所应助HYH采纳,获得20
1秒前
1秒前
木香完成签到,获得积分10
2秒前
尘雾发布了新的文献求助10
3秒前
4秒前
高鑫完成签到 ,获得积分10
4秒前
英姑应助dd采纳,获得10
4秒前
Chan0501关注了科研通微信公众号
5秒前
5秒前
研友_LMNjkn发布了新的文献求助10
5秒前
tjunqi完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助下课了吧采纳,获得10
7秒前
7秒前
7秒前
好的完成签到,获得积分20
8秒前
蜂蜜不是糖完成签到 ,获得积分10
8秒前
狮子最爱吃芒果完成签到,获得积分10
8秒前
9秒前
10秒前
尘雾完成签到,获得积分10
10秒前
澜生发布了新的文献求助10
11秒前
leekle完成签到,获得积分10
12秒前
shengChen发布了新的文献求助10
12秒前
自信鞯发布了新的文献求助10
13秒前
江北小赵完成签到,获得积分10
13秒前
13秒前
13秒前
clock完成签到 ,获得积分10
13秒前
虫二先生完成签到 ,获得积分10
13秒前
甜甜的难敌完成签到,获得积分10
14秒前
14秒前
15秒前
小潘同学完成签到,获得积分10
15秒前
15秒前
科研通AI5应助传统的海露采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794