Multi-residual tensor completion for spatiotemporal data imputation

残余物 插补(统计学) 缺少数据 计算机科学 数据挖掘 张量(固有定义) 可视化 人工智能 机器学习 模式识别(心理学) 算法 数学 纯数学
作者
Jing Zhang,Jing Wei
出处
期刊:Internet of things [Elsevier]
卷期号:25: 101114-101114
标识
DOI:10.1016/j.iot.2024.101114
摘要

In Cyber–Physical Systems, the spatiotemporal data collected often contains many missing values, which result from uncontrollable factors like sensor failure, communication disruption, and environmental interference. The missing values can significantly degrade system performance and even jeopardize system stability. In previous studies, tensor models were considered effective in spatiotemporal data imputation, attributed to their capability to capture spatiotemporal correlations within the data. Although tensor models can effectively capture the global features of data, they cannot learn the local fluctuation characteristics well. To further enhance the tensor model's ability to capture local features, a residual iteration strategy was designed, enabling the model to learn local features from the previous round of residuals. Additionally, a multi tensor completion strategy was developed to achieve more accurate learning in each round of residuals. Combining these two strategies with tensor completion results in the Multiple Residual Tensor Completion (MRTC). We demonstrate through the visualization of imputation results that MRTC can further learn local features of the data compared to the original tensor completion model. In addition, comparative experiments were conducted on three publicly available spatiotemporal datasets, and the results showed that MRTC performed well in various missing data scenarios, outperforming the other four state-of-the-art tensor based imputation models in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangyuheng完成签到,获得积分10
刚刚
1秒前
Lavendar完成签到 ,获得积分10
2秒前
xjcy应助xzy998采纳,获得10
2秒前
MOYU完成签到,获得积分20
2秒前
研友_LX66qZ完成签到,获得积分10
2秒前
安详安寒发布了新的文献求助10
3秒前
4秒前
5秒前
万能图书馆应助hesongheng采纳,获得10
5秒前
6秒前
6秒前
酷酷的俊驰完成签到 ,获得积分10
7秒前
7秒前
burninhell完成签到,获得积分10
7秒前
8秒前
Yuantian发布了新的文献求助10
8秒前
明理映真完成签到,获得积分10
8秒前
小叮当发布了新的文献求助10
10秒前
10秒前
11秒前
13秒前
几号大家好完成签到,获得积分10
15秒前
温暖乌龟发布了新的文献求助10
16秒前
jyy应助Yuantian采纳,获得30
16秒前
懵懂的灭男完成签到,获得积分10
17秒前
橙浅关注了科研通微信公众号
17秒前
18秒前
18秒前
蛋蛋咖发布了新的文献求助10
18秒前
rid4iuclous2完成签到,获得积分10
20秒前
NikiJu完成签到,获得积分10
20秒前
星辰大海应助亦屿森采纳,获得10
20秒前
20秒前
顾矜应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
21秒前
华仔应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046