ACDSSNet: Atrous Convolution-based Deep Semantic Segmentation Network for Efficient Detection of Sickle Cell Anemia

计算机科学 人工智能 分割 卷积神经网络 图像分割 模式识别(心理学) 尺度空间分割 分类器(UML) 特征提取 计算机视觉
作者
Pradeep Das,Abinash Dash,Sukadev Meher
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-8
标识
DOI:10.1109/jbhi.2024.3362843
摘要

In medical image processing, semantic segmentation plays an important role since, in most applications, it is required to find the exact location of the anomaly. It is tough than the segmentation or classification task since in this task class-belongingness of each pixel is predicted. The presence of noise, and variations of viewpoint, shape, and size of cells make it more challenging. In this work, two novel Atrous Convolution-based Deep Semantic Segmentation Networks: ACDSSNet-I, ACDSSNet-II are proposed for more accurate Sickle Cell Anemia (SCA) detection, which can mitigate these issues. The main contributions are: 1) Improvement of feature extraction performance by employing Atrous convolution-based dense prediction, which yields varying field-view with adaptive resolution; 2) Employment of Atrous spatial pyramid-based pooling resulting in more robust segmentation; 3) Upgrading the segmentation performance by adding an efficient decoder module to finetune the segmentation, particularly at object boundaries; 4) Design of modified DeepLabV3+ architectures (MDA) by introducing computationally efficient MobileNetV2 or ResNet50 as a base classifier; 5) Further performance improvement has been accomplished by hybridizing MDA-1 with MDA-2 by integrating the benefits of MobileNetV2 models and ADAM and SGDM optimizers; 6) Improvement of overall performance by efficiently utilizing the input image's saturation information only to minimize the false positive. Furthermore, the optimal selection of threshold value makes the hybridization of MDA-1 with MDA-2 efficient resulting in more accurate semantic segmentation. The experimental results illustrate the proposed model outperforms others with the best semantic segmentation performances: 98.21% accuracy, 99.00% specificity, and 0.9547 DSC value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
琉琉硫发布了新的文献求助10
3秒前
若即若离完成签到,获得积分10
3秒前
3秒前
单纯黑米发布了新的文献求助10
6秒前
6秒前
QQ完成签到,获得积分10
7秒前
8秒前
Forever完成签到,获得积分10
8秒前
科研小白发布了新的文献求助10
8秒前
姜菲菲完成签到 ,获得积分10
8秒前
早睡早起身体好Q完成签到 ,获得积分10
9秒前
yyb完成签到,获得积分10
9秒前
10秒前
10秒前
cqnuly完成签到,获得积分10
11秒前
2哇哇哇发布了新的文献求助10
12秒前
邵洋发布了新的文献求助10
14秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
15秒前
16秒前
18秒前
yang完成签到,获得积分10
18秒前
赵婧完成签到,获得积分10
19秒前
诚心的以寒完成签到,获得积分10
23秒前
23秒前
ZJT发布了新的文献求助10
24秒前
26秒前
大胆的初瑶完成签到,获得积分10
27秒前
28秒前
ixueyi完成签到,获得积分10
29秒前
aloha01完成签到,获得积分10
29秒前
listop完成签到,获得积分10
30秒前
完美世界应助Hope采纳,获得10
30秒前
30秒前
好好好完成签到 ,获得积分10
31秒前
ll发布了新的文献求助10
31秒前
英姑应助ZJT采纳,获得10
32秒前
慕青应助jason采纳,获得80
33秒前
33秒前
足球发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565531
求助须知:如何正确求助?哪些是违规求助? 4650613
关于积分的说明 14691991
捐赠科研通 4592552
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492065
关于科研通互助平台的介绍 1463281