ACDSSNet: Atrous Convolution-based Deep Semantic Segmentation Network for Efficient Detection of Sickle Cell Anemia

计算机科学 人工智能 分割 卷积神经网络 图像分割 模式识别(心理学) 尺度空间分割 分类器(UML) 特征提取 计算机视觉
作者
Pradeep Das,Abinash Dash,Sukadev Meher
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-8
标识
DOI:10.1109/jbhi.2024.3362843
摘要

In medical image processing, semantic segmentation plays an important role since, in most applications, it is required to find the exact location of the anomaly. It is tough than the segmentation or classification task since in this task class-belongingness of each pixel is predicted. The presence of noise, and variations of viewpoint, shape, and size of cells make it more challenging. In this work, two novel Atrous Convolution-based Deep Semantic Segmentation Networks: ACDSSNet-I, ACDSSNet-II are proposed for more accurate Sickle Cell Anemia (SCA) detection, which can mitigate these issues. The main contributions are: 1) Improvement of feature extraction performance by employing Atrous convolution-based dense prediction, which yields varying field-view with adaptive resolution; 2) Employment of Atrous spatial pyramid-based pooling resulting in more robust segmentation; 3) Upgrading the segmentation performance by adding an efficient decoder module to finetune the segmentation, particularly at object boundaries; 4) Design of modified DeepLabV3+ architectures (MDA) by introducing computationally efficient MobileNetV2 or ResNet50 as a base classifier; 5) Further performance improvement has been accomplished by hybridizing MDA-1 with MDA-2 by integrating the benefits of MobileNetV2 models and ADAM and SGDM optimizers; 6) Improvement of overall performance by efficiently utilizing the input image's saturation information only to minimize the false positive. Furthermore, the optimal selection of threshold value makes the hybridization of MDA-1 with MDA-2 efficient resulting in more accurate semantic segmentation. The experimental results illustrate the proposed model outperforms others with the best semantic segmentation performances: 98.21% accuracy, 99.00% specificity, and 0.9547 DSC value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助Gladiolus采纳,获得10
1秒前
柒z完成签到,获得积分10
2秒前
可爱的函函应助升龙击采纳,获得20
2秒前
ZSQ完成签到,获得积分10
2秒前
过时的小萱完成签到,获得积分10
3秒前
奥利奥爱好者完成签到,获得积分10
4秒前
4秒前
满意的匪完成签到 ,获得积分10
5秒前
小郑完成签到 ,获得积分10
6秒前
只只完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
司空晓山发布了新的文献求助30
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
周才发布了新的文献求助10
9秒前
9秒前
海蓝博完成签到,获得积分10
9秒前
阿峤完成签到,获得积分10
9秒前
苦瓜不哭发布了新的文献求助10
10秒前
Rollei应助科研通管家采纳,获得10
10秒前
Rollei应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
Rollei应助科研通管家采纳,获得10
10秒前
飘逸书易完成签到,获得积分20
13秒前
安详的御姐完成签到,获得积分10
13秒前
14秒前
111完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734851
求助须知:如何正确求助?哪些是违规求助? 5356584
关于积分的说明 15327858
捐赠科研通 4879364
什么是DOI,文献DOI怎么找? 2621846
邀请新用户注册赠送积分活动 1571071
关于科研通互助平台的介绍 1527841