ACDSSNet: Atrous Convolution-based Deep Semantic Segmentation Network for Efficient Detection of Sickle Cell Anemia

计算机科学 人工智能 分割 卷积神经网络 图像分割 模式识别(心理学) 尺度空间分割 分类器(UML) 特征提取 计算机视觉
作者
Pradeep Das,Abinash Dash,Sukadev Meher
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-8
标识
DOI:10.1109/jbhi.2024.3362843
摘要

In medical image processing, semantic segmentation plays an important role since, in most applications, it is required to find the exact location of the anomaly. It is tough than the segmentation or classification task since in this task class-belongingness of each pixel is predicted. The presence of noise, and variations of viewpoint, shape, and size of cells make it more challenging. In this work, two novel Atrous Convolution-based Deep Semantic Segmentation Networks: ACDSSNet-I, ACDSSNet-II are proposed for more accurate Sickle Cell Anemia (SCA) detection, which can mitigate these issues. The main contributions are: 1) Improvement of feature extraction performance by employing Atrous convolution-based dense prediction, which yields varying field-view with adaptive resolution; 2) Employment of Atrous spatial pyramid-based pooling resulting in more robust segmentation; 3) Upgrading the segmentation performance by adding an efficient decoder module to finetune the segmentation, particularly at object boundaries; 4) Design of modified DeepLabV3+ architectures (MDA) by introducing computationally efficient MobileNetV2 or ResNet50 as a base classifier; 5) Further performance improvement has been accomplished by hybridizing MDA-1 with MDA-2 by integrating the benefits of MobileNetV2 models and ADAM and SGDM optimizers; 6) Improvement of overall performance by efficiently utilizing the input image's saturation information only to minimize the false positive. Furthermore, the optimal selection of threshold value makes the hybridization of MDA-1 with MDA-2 efficient resulting in more accurate semantic segmentation. The experimental results illustrate the proposed model outperforms others with the best semantic segmentation performances: 98.21% accuracy, 99.00% specificity, and 0.9547 DSC value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
迎海完成签到,获得积分10
6秒前
shitou完成签到,获得积分10
6秒前
郭郭发布了新的文献求助10
7秒前
生动路人应助MYY采纳,获得10
9秒前
Gloyxtg发布了新的文献求助10
10秒前
10秒前
谷谷完成签到 ,获得积分10
11秒前
14秒前
22秒前
zly完成签到 ,获得积分10
23秒前
23秒前
可爱的函函应助lty采纳,获得10
28秒前
wanwan发布了新的文献求助10
28秒前
30秒前
新xin完成签到,获得积分10
34秒前
大个应助影儿采纳,获得10
34秒前
35秒前
36秒前
iday发布了新的文献求助10
39秒前
40秒前
41秒前
lty发布了新的文献求助10
42秒前
小雨发布了新的文献求助10
43秒前
77完成签到 ,获得积分10
44秒前
彭于晏应助歪比八不采纳,获得10
44秒前
稳重凌旋发布了新的文献求助10
45秒前
cossen完成签到,获得积分10
45秒前
50秒前
领养一朵云关注了科研通微信公众号
51秒前
孙燕应助王宏宇采纳,获得10
54秒前
55秒前
歪比八不发布了新的文献求助10
55秒前
hying发布了新的文献求助10
56秒前
56秒前
58秒前
1分钟前
zdd发布了新的文献求助10
1分钟前
Zjx发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993104
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264385
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652