ACDSSNet: Atrous Convolution-based Deep Semantic Segmentation Network for Efficient Detection of Sickle Cell Anemia

计算机科学 人工智能 分割 卷积神经网络 图像分割 模式识别(心理学) 尺度空间分割 分类器(UML) 特征提取 计算机视觉
作者
Pradeep Das,Abinash Dash,Sukadev Meher
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-8
标识
DOI:10.1109/jbhi.2024.3362843
摘要

In medical image processing, semantic segmentation plays an important role since, in most applications, it is required to find the exact location of the anomaly. It is tough than the segmentation or classification task since in this task class-belongingness of each pixel is predicted. The presence of noise, and variations of viewpoint, shape, and size of cells make it more challenging. In this work, two novel Atrous Convolution-based Deep Semantic Segmentation Networks: ACDSSNet-I, ACDSSNet-II are proposed for more accurate Sickle Cell Anemia (SCA) detection, which can mitigate these issues. The main contributions are: 1) Improvement of feature extraction performance by employing Atrous convolution-based dense prediction, which yields varying field-view with adaptive resolution; 2) Employment of Atrous spatial pyramid-based pooling resulting in more robust segmentation; 3) Upgrading the segmentation performance by adding an efficient decoder module to finetune the segmentation, particularly at object boundaries; 4) Design of modified DeepLabV3+ architectures (MDA) by introducing computationally efficient MobileNetV2 or ResNet50 as a base classifier; 5) Further performance improvement has been accomplished by hybridizing MDA-1 with MDA-2 by integrating the benefits of MobileNetV2 models and ADAM and SGDM optimizers; 6) Improvement of overall performance by efficiently utilizing the input image's saturation information only to minimize the false positive. Furthermore, the optimal selection of threshold value makes the hybridization of MDA-1 with MDA-2 efficient resulting in more accurate semantic segmentation. The experimental results illustrate the proposed model outperforms others with the best semantic segmentation performances: 98.21% accuracy, 99.00% specificity, and 0.9547 DSC value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助大方的凌波采纳,获得10
刚刚
Sisyphus完成签到,获得积分10
1秒前
MIAAAO完成签到,获得积分10
1秒前
小蛇玩发布了新的文献求助10
1秒前
科研人发布了新的文献求助10
1秒前
科研通AI2S应助zsy采纳,获得10
1秒前
科研通AI6应助进步采纳,获得10
2秒前
3秒前
科研通AI2S应助zifeimo采纳,获得10
3秒前
满满完成签到 ,获得积分10
4秒前
4秒前
科研通AI6应助简单的幻儿采纳,获得10
4秒前
4秒前
宸5931完成签到,获得积分10
5秒前
5秒前
5秒前
CDN完成签到,获得积分20
6秒前
英俊的铭应助快乐采纳,获得10
6秒前
虚幻双双发布了新的文献求助10
6秒前
Blank完成签到,获得积分10
6秒前
6秒前
希望天下0贩的0应助lx采纳,获得10
6秒前
大方依玉完成签到 ,获得积分10
7秒前
7秒前
小马甲应助charm12采纳,获得10
8秒前
西部牛仔发布了新的文献求助10
8秒前
8秒前
大个应助fanicky采纳,获得10
9秒前
9秒前
可不关注了科研通微信公众号
9秒前
七七发布了新的文献求助10
9秒前
orixero应助Xinwen0322采纳,获得10
9秒前
ZC完成签到,获得积分10
10秒前
书雪发布了新的文献求助10
10秒前
俞若枫完成签到,获得积分0
10秒前
今后应助wu采纳,获得10
10秒前
可靠之玉发布了新的文献求助10
11秒前
深情安青应助交理采纳,获得10
11秒前
所所应助敏敏采纳,获得10
11秒前
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646