CycleSeg: Simultaneous synthetic CT generation and unsupervised segmentation for MR‐only radiotherapy treatment planning of prostate cancer

分割 轮廓 计算机科学 人工智能 放射治疗计划 尺度空间分割 前列腺癌 模式识别(心理学) 特征(语言学) 图像分割 放射治疗 核医学 计算机视觉 医学 癌症 放射科 哲学 内科学 计算机图形学(图像) 语言学
作者
Huan Minh Luu,Gyu Sang Yoo,Won Park,Sung‐Hong Park
出处
期刊:Medical Physics [Wiley]
卷期号:51 (6): 4365-4379
标识
DOI:10.1002/mp.16976
摘要

Abstract Background MR‐only radiotherapy treatment planning is an attractive alternative to conventional workflow, reducing scan time and ionizing radiation. It is crucial to derive the electron density map or synthetic CT (sCT) from MR data to perform dose calculations to enable MR‐only treatment planning. Automatic segmentation of relevant organs in MR images can accelerate the process by preventing the time‐consuming manual contouring step. However, the segmentation label is available only for CT data in many cases. Purpose We propose CycleSeg, a unified framework that generates sCT and corresponding segmentation from MR images without access to MR segmentation labels Methods CycleSeg utilizes the CycleGAN formulation to perform unpaired synthesis of sCT and image alignment. To enable MR (sCT) segmentation, CycleSeg incorporates unsupervised domain adaptation by using a pseudo‐labeling approach with feature alignment in semantic segmentation space. In contrast to previous approaches that perform segmentation on MR data, CycleSeg could perform segmentation on both MR and sCT. Experiments were performed with data from prostate cancer patients, with 78/7/10 subjects in the training/validation/test sets, respectively. Results CycleSeg showed the best sCT generation results, with the lowest mean absolute error of 102.2 and the lowest Fréchet inception distance of 13.0. CycleSeg also performed best on MR segmentation, with the highest average dice score of 81.0 and 81.1 for MR and sCT segmentation, respectively. Ablation experiments confirmed the contribution of the proposed components of CycleSeg. Conclusion CycleSeg effectively synthesized CT and performed segmentation on MR images of prostate cancer patients. Thus, CycleSeg has the potential to expedite MR‐only radiotherapy treatment planning, reducing the prescribed scans and manual segmentation effort, and increasing throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guhuihaozi发布了新的文献求助10
刚刚
guhuihaozi发布了新的文献求助10
刚刚
guhuihaozi发布了新的文献求助10
刚刚
guhuihaozi发布了新的文献求助10
刚刚
hm完成签到,获得积分10
1秒前
1秒前
CipherSage应助逺山長采纳,获得10
1秒前
1秒前
完美世界应助拉扣采纳,获得10
2秒前
菜菜完成签到,获得积分10
2秒前
2秒前
2秒前
GH07355018完成签到,获得积分10
3秒前
中国任完成签到 ,获得积分10
3秒前
3秒前
4秒前
星宿完成签到,获得积分10
4秒前
CodeCraft应助Jemmy采纳,获得10
4秒前
5秒前
科研通AI5应助Oil采纳,获得10
5秒前
领导范儿应助研友_LOKqmL采纳,获得10
5秒前
xiaochaoge应助机智的皮皮虾采纳,获得10
5秒前
善学以致用应助LLX123采纳,获得10
6秒前
xxyy发布了新的文献求助10
7秒前
7秒前
游明霞发布了新的文献求助10
7秒前
7秒前
心绒完成签到,获得积分10
7秒前
bodhi发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
轻nxwjn完成签到,获得积分10
8秒前
liuyifei发布了新的文献求助20
8秒前
8秒前
情怀应助chen采纳,获得10
9秒前
9秒前
Nyxia发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068676
求助须知:如何正确求助?哪些是违规求助? 4290262
关于积分的说明 13366925
捐赠科研通 4110092
什么是DOI,文献DOI怎么找? 2250689
邀请新用户注册赠送积分活动 1255935
关于科研通互助平台的介绍 1188480