CycleSeg: Simultaneous synthetic CT generation and unsupervised segmentation for MR‐only radiotherapy treatment planning of prostate cancer

分割 轮廓 计算机科学 人工智能 放射治疗计划 尺度空间分割 前列腺癌 模式识别(心理学) 特征(语言学) 图像分割 放射治疗 核医学 计算机视觉 医学 癌症 放射科 内科学 语言学 哲学 计算机图形学(图像)
作者
Huan Minh Luu,Gyu Sang Yoo,Won Park,Sung‐Hong Park
出处
期刊:Medical Physics [Wiley]
卷期号:51 (6): 4365-4379
标识
DOI:10.1002/mp.16976
摘要

Abstract Background MR‐only radiotherapy treatment planning is an attractive alternative to conventional workflow, reducing scan time and ionizing radiation. It is crucial to derive the electron density map or synthetic CT (sCT) from MR data to perform dose calculations to enable MR‐only treatment planning. Automatic segmentation of relevant organs in MR images can accelerate the process by preventing the time‐consuming manual contouring step. However, the segmentation label is available only for CT data in many cases. Purpose We propose CycleSeg, a unified framework that generates sCT and corresponding segmentation from MR images without access to MR segmentation labels Methods CycleSeg utilizes the CycleGAN formulation to perform unpaired synthesis of sCT and image alignment. To enable MR (sCT) segmentation, CycleSeg incorporates unsupervised domain adaptation by using a pseudo‐labeling approach with feature alignment in semantic segmentation space. In contrast to previous approaches that perform segmentation on MR data, CycleSeg could perform segmentation on both MR and sCT. Experiments were performed with data from prostate cancer patients, with 78/7/10 subjects in the training/validation/test sets, respectively. Results CycleSeg showed the best sCT generation results, with the lowest mean absolute error of 102.2 and the lowest Fréchet inception distance of 13.0. CycleSeg also performed best on MR segmentation, with the highest average dice score of 81.0 and 81.1 for MR and sCT segmentation, respectively. Ablation experiments confirmed the contribution of the proposed components of CycleSeg. Conclusion CycleSeg effectively synthesized CT and performed segmentation on MR images of prostate cancer patients. Thus, CycleSeg has the potential to expedite MR‐only radiotherapy treatment planning, reducing the prescribed scans and manual segmentation effort, and increasing throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半分青完成签到,获得积分10
刚刚
刚刚
siu完成签到 ,获得积分10
刚刚
刚刚
vivianzhang发布了新的文献求助20
1秒前
张潇潇完成签到,获得积分10
1秒前
Crisp发布了新的文献求助10
1秒前
研友_VZG7GZ应助活泼的傲薇采纳,获得10
1秒前
2秒前
ZZZZ发布了新的文献求助30
2秒前
ddsgsd完成签到,获得积分10
3秒前
白水完成签到 ,获得积分10
3秒前
3秒前
4秒前
弱水三千发布了新的文献求助10
4秒前
华仔应助lishunzcqty采纳,获得10
4秒前
5秒前
txs发布了新的文献求助10
5秒前
mzp发布了新的文献求助10
6秒前
6秒前
xye发布了新的文献求助10
6秒前
8秒前
8秒前
尊敬曼岚发布了新的文献求助10
9秒前
Ava应助ggg采纳,获得10
9秒前
10秒前
小杨应助闪闪语风采纳,获得10
10秒前
Fu发布了新的文献求助10
11秒前
甜甜的夜南完成签到,获得积分10
11秒前
CodeCraft应助香蕉擎采纳,获得10
12秒前
李爱国应助南风不竞采纳,获得10
12秒前
12秒前
12秒前
haly完成签到 ,获得积分10
12秒前
子车茗应助舒心的南烟采纳,获得20
12秒前
女神金发布了新的文献求助10
12秒前
liutao发布了新的文献求助10
13秒前
13秒前
liwei发布了新的文献求助10
14秒前
灰灰应助xiaotudou95采纳,获得10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259477
求助须知:如何正确求助?哪些是违规求助? 2901093
关于积分的说明 8313913
捐赠科研通 2570455
什么是DOI,文献DOI怎么找? 1396534
科研通“疑难数据库(出版商)”最低求助积分说明 653523
邀请新用户注册赠送积分活动 631566