Multi-scale spatial and spectral feature fusion for soil carbon content prediction based on hyperspectral images

高光谱成像 比例(比率) 特征(语言学) 融合 碳纤维 内容(测量理论) 遥感 环境科学 空间生态学 土壤碳 土壤科学 模式识别(心理学) 计算机科学 人工智能 土壤水分 数学 生态学 地质学 地理 地图学 生物 哲学 数学分析 复合数 语言学 算法
作者
Xueying Li,Zongmin Li,Huimin Qiu,Guangyuan Chen,Pingping Fan,Yan Liu
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:160: 111843-111843 被引量:1
标识
DOI:10.1016/j.ecolind.2024.111843
摘要

Soil carbon content prediction based on hyperspectral images can achieve large-scale spatial measurement, which has the advantages of wide coverage and fast information collection, is more suitable for field data collection. However, the research on soil carbon content prediction based on hyperspectral images mainly focuses on feature extraction of spectral information, ignoring the spatial information, and cannot well reveal the intrinsic structural characteristics of data. Aiming at the lack of spatial features consideration in hyperspectral images, soil carbon content prediction methods based on multi-scale feature fusion are proposed by hyperspectral image. At the same time of extracting spectral features from hyperspectral images, the spatial information is used for the first time and a multi-scale spectral and spatial feature network (SpeSpaMN) is designed. In the SpeSpaMN, the multi-scale spectral feature network (SpeMN) is constructed to extract spectral features, the multi-scale spatial feature network (SpaMN) is constructed to extract spatial features. The two networks are fused by using the complementary relationship between different scale features to achieve soil carbon content prediction based on multi-scale feature fusion. The results showed that SpeSpaMN had the best results compared to other methods, followed by the method of SpeMN. The RPD of Inland, Aoshan Bay and Jiaozhou Bay samples based on SpeSpaMN were increased by 47.36%, 37.96% and 4.30% respectively. This paper can effectively solve the problem of the deep fusion of spatial and spectral features in the soil carbon content prediction by hyperspectral image, so as to improve the accuracy and stability of soil carbon content prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
7秒前
7秒前
8秒前
9秒前
HYD发布了新的文献求助10
9秒前
9秒前
cl完成签到 ,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助30
11秒前
12秒前
丁莞完成签到,获得积分10
12秒前
000发布了新的文献求助10
15秒前
垃圾完成签到 ,获得积分10
16秒前
Gengli完成签到,获得积分10
17秒前
17秒前
CJlamant完成签到,获得积分10
17秒前
hwy完成签到 ,获得积分10
19秒前
ssr发布了新的文献求助10
20秒前
wensir完成签到,获得积分10
22秒前
23秒前
lgold完成签到,获得积分10
27秒前
28秒前
29秒前
29秒前
COCO完成签到,获得积分10
32秒前
不安豪英发布了新的文献求助10
33秒前
科研通AI5应助allenise采纳,获得10
33秒前
34秒前
34秒前
善良的静柏完成签到,获得积分10
34秒前
橙猫猫完成签到,获得积分10
35秒前
37秒前
丘比特应助压缩采纳,获得10
37秒前
HYD关闭了HYD文献求助
37秒前
37秒前
38秒前
YaoZhang完成签到 ,获得积分10
39秒前
迷路的二狗完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574159
求助须知:如何正确求助?哪些是违规求助? 3994206
关于积分的说明 12364971
捐赠科研通 3667420
什么是DOI,文献DOI怎么找? 2021241
邀请新用户注册赠送积分活动 1055370
科研通“疑难数据库(出版商)”最低求助积分说明 942774