已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-scale spatial and spectral feature fusion for soil carbon content prediction based on hyperspectral images

高光谱成像 比例(比率) 特征(语言学) 融合 碳纤维 内容(测量理论) 遥感 环境科学 空间生态学 土壤碳 土壤科学 模式识别(心理学) 计算机科学 人工智能 土壤水分 数学 生态学 地质学 地理 地图学 生物 数学分析 语言学 哲学 算法 复合数
作者
Xueying Li,Zongmin Li,Huimin Qiu,Guangyuan Chen,Pingping Fan,Yan Liu
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:160: 111843-111843 被引量:1
标识
DOI:10.1016/j.ecolind.2024.111843
摘要

Soil carbon content prediction based on hyperspectral images can achieve large-scale spatial measurement, which has the advantages of wide coverage and fast information collection, is more suitable for field data collection. However, the research on soil carbon content prediction based on hyperspectral images mainly focuses on feature extraction of spectral information, ignoring the spatial information, and cannot well reveal the intrinsic structural characteristics of data. Aiming at the lack of spatial features consideration in hyperspectral images, soil carbon content prediction methods based on multi-scale feature fusion are proposed by hyperspectral image. At the same time of extracting spectral features from hyperspectral images, the spatial information is used for the first time and a multi-scale spectral and spatial feature network (SpeSpaMN) is designed. In the SpeSpaMN, the multi-scale spectral feature network (SpeMN) is constructed to extract spectral features, the multi-scale spatial feature network (SpaMN) is constructed to extract spatial features. The two networks are fused by using the complementary relationship between different scale features to achieve soil carbon content prediction based on multi-scale feature fusion. The results showed that SpeSpaMN had the best results compared to other methods, followed by the method of SpeMN. The RPD of Inland, Aoshan Bay and Jiaozhou Bay samples based on SpeSpaMN were increased by 47.36%, 37.96% and 4.30% respectively. This paper can effectively solve the problem of the deep fusion of spatial and spectral features in the soil carbon content prediction by hyperspectral image, so as to improve the accuracy and stability of soil carbon content prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LUMOS完成签到,获得积分10
刚刚
1秒前
2秒前
kesong完成签到,获得积分10
2秒前
罗大壮发布了新的文献求助10
2秒前
Rondab应助上好佳采纳,获得10
3秒前
shencai完成签到,获得积分10
4秒前
上官若男应助shinn采纳,获得10
6秒前
伶俐的高烽完成签到 ,获得积分10
6秒前
zzz发布了新的文献求助10
7秒前
qikkk应助wwwwrrrrr采纳,获得10
8秒前
8秒前
9秒前
彭于晏应助evelynnni采纳,获得30
9秒前
LZL完成签到 ,获得积分10
9秒前
11秒前
铅笔完成签到,获得积分10
11秒前
chuyinweilai完成签到,获得积分10
11秒前
1117完成签到 ,获得积分10
12秒前
深情安青应助demo采纳,获得10
12秒前
粗犷的抽屉完成签到,获得积分10
13秒前
13秒前
理想发布了新的文献求助10
14秒前
subat完成签到,获得积分10
15秒前
16秒前
Rylee发布了新的文献求助10
17秒前
Saw完成签到,获得积分10
17秒前
17秒前
科研通AI2S应助manh123采纳,获得10
19秒前
19秒前
塵埃发布了新的文献求助10
20秒前
shinn发布了新的文献求助10
21秒前
21秒前
21秒前
我是老大应助Rylee采纳,获得10
22秒前
elle发布了新的文献求助10
22秒前
22秒前
heavenhorse应助zzz采纳,获得10
22秒前
颜倾完成签到,获得积分10
23秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968009
求助须知:如何正确求助?哪些是违规求助? 3513050
关于积分的说明 11166132
捐赠科研通 3248187
什么是DOI,文献DOI怎么找? 1794124
邀请新用户注册赠送积分活动 874880
科研通“疑难数据库(出版商)”最低求助积分说明 804610