Multi-scale spatial and spectral feature fusion for soil carbon content prediction based on hyperspectral images

高光谱成像 比例(比率) 特征(语言学) 融合 碳纤维 内容(测量理论) 遥感 环境科学 空间生态学 土壤碳 土壤科学 模式识别(心理学) 计算机科学 人工智能 土壤水分 数学 生态学 地质学 地理 地图学 生物 数学分析 语言学 哲学 算法 复合数
作者
Xueying Li,Zongmin Li,Huimin Qiu,Guangyuan Chen,Pingping Fan,Yan Liu
出处
期刊:Ecological Indicators [Elsevier]
卷期号:160: 111843-111843 被引量:1
标识
DOI:10.1016/j.ecolind.2024.111843
摘要

Soil carbon content prediction based on hyperspectral images can achieve large-scale spatial measurement, which has the advantages of wide coverage and fast information collection, is more suitable for field data collection. However, the research on soil carbon content prediction based on hyperspectral images mainly focuses on feature extraction of spectral information, ignoring the spatial information, and cannot well reveal the intrinsic structural characteristics of data. Aiming at the lack of spatial features consideration in hyperspectral images, soil carbon content prediction methods based on multi-scale feature fusion are proposed by hyperspectral image. At the same time of extracting spectral features from hyperspectral images, the spatial information is used for the first time and a multi-scale spectral and spatial feature network (SpeSpaMN) is designed. In the SpeSpaMN, the multi-scale spectral feature network (SpeMN) is constructed to extract spectral features, the multi-scale spatial feature network (SpaMN) is constructed to extract spatial features. The two networks are fused by using the complementary relationship between different scale features to achieve soil carbon content prediction based on multi-scale feature fusion. The results showed that SpeSpaMN had the best results compared to other methods, followed by the method of SpeMN. The RPD of Inland, Aoshan Bay and Jiaozhou Bay samples based on SpeSpaMN were increased by 47.36%, 37.96% and 4.30% respectively. This paper can effectively solve the problem of the deep fusion of spatial and spectral features in the soil carbon content prediction by hyperspectral image, so as to improve the accuracy and stability of soil carbon content prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhuhe完成签到,获得积分10
1秒前
1秒前
丰知然应助小点点采纳,获得10
2秒前
13发布了新的文献求助10
2秒前
Hu完成签到,获得积分20
3秒前
3秒前
Hayat发布了新的文献求助50
3秒前
烟花应助灵巧的石头采纳,获得10
3秒前
4秒前
大模型应助调皮的巧凡采纳,获得10
4秒前
4秒前
4秒前
别管我了完成签到,获得积分10
4秒前
5秒前
yxy发布了新的文献求助10
5秒前
健康小宋完成签到,获得积分10
5秒前
斯文败类应助CDX采纳,获得10
5秒前
善良的函发布了新的文献求助10
6秒前
打打应助含蓄的傲霜采纳,获得10
7秒前
8秒前
8秒前
9秒前
wanci应助13采纳,获得10
9秒前
silentforsure发布了新的文献求助10
10秒前
llyu完成签到,获得积分10
10秒前
嘟嘟完成签到,获得积分10
10秒前
樱书发布了新的文献求助10
10秒前
10秒前
binz完成签到,获得积分0
11秒前
奋力加载ing完成签到,获得积分20
12秒前
lzxucn发布了新的文献求助10
12秒前
在水一方应助灵巧的石头采纳,获得10
12秒前
3089ggf发布了新的文献求助10
12秒前
12秒前
123完成签到,获得积分20
13秒前
liua发布了新的文献求助10
13秒前
无情访琴发布了新的文献求助30
15秒前
量子星尘发布了新的文献求助10
16秒前
二甜发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578047
求助须知:如何正确求助?哪些是违规求助? 4663043
关于积分的说明 14744355
捐赠科研通 4603721
什么是DOI,文献DOI怎么找? 2526643
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465657