Nondestructive Determination of Epicarp Hardness of Passion Fruit Using Near-Infrared Spectroscopy during Storage

变量消去 特征选择 均方误差 光谱学 生物系统 分光计 偏最小二乘回归 随机森林 近红外光谱 材料科学 光学 人工智能 分析化学(期刊) 化学 计算机科学 数学 物理 统计 机器学习 色谱法 生物 量子力学 推论
作者
Junyi Wang,Dandan Fu,Zhigang Hu,Yan Chen,Bin Li
出处
期刊:Foods [MDPI AG]
卷期号:13 (5): 783-783 被引量:1
标识
DOI:10.3390/foods13050783
摘要

The hardness of passion fruit is a critical feature to consider when determining maturity during post-harvest storage. The capacity of near-infrared diffuse reflectance spectroscopy (NIRS) for non-destructive detection of outer and inner hardness of passion fruit epicarp was investigated in this work. The passion fruits’ spectra were obtained using a near-infrared spectrometer with a wavelength range of 10,000–4000 cm−1. The hardness of passion fruit’s outer epicarp (F1) and inner epicarp (F2) was then measured using a texture analyzer. Moving average (MA) and mean-centering (MC) techniques were used to preprocess the collected spectral data. Competitive adaptive reweighted sampling (CARS), successive projection algorithm (SPA), and uninformative variable elimination (UVE) were used to pick feature wavelengths. Grid-search-optimized random forest (Grids-RF) models and genetic-algorithm-optimized support vector regression (GA-SVR) models were created as part of the modeling process. After MC preprocessing and CARS selection, MC-CARS-Grids-RF model with 7 feature wavelengths had the greatest prediction ability for F1. The mean square error of prediction set (RMSEP) was 0.166 gN. Similarly, following MA preprocessing, the MA-Grids-RF model displayed the greatest predictive performance for F2, with an RMSEP of 0.101 gN. When compared to models produced using the original spectra, the R2P for models formed after preprocessing and wavelength selection improved. The findings showed that near-infrared spectroscopy may predict the hardness of passion fruit epicarp, which can be used to identify quality during post-harvest storage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助zlw121采纳,获得10
刚刚
刚刚
香蕉觅云应助陌陌采纳,获得10
1秒前
领导范儿应助雨群采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
耍酷雁风发布了新的文献求助10
2秒前
huangsile发布了新的文献求助10
2秒前
星辰大海应助gq采纳,获得10
2秒前
CROWN发布了新的文献求助10
3秒前
FAKER发布了新的文献求助30
3秒前
4秒前
5秒前
5秒前
科研通AI6应助识途采纳,获得10
5秒前
酷炫冬日关注了科研通微信公众号
5秒前
6秒前
虚幻百川应助iKYy采纳,获得10
6秒前
7秒前
7秒前
芝士小熊发布了新的文献求助10
8秒前
8秒前
callmecjh完成签到,获得积分10
8秒前
谷青完成签到,获得积分10
9秒前
小鳄鱼夸夸完成签到,获得积分10
9秒前
9秒前
yutingemail发布了新的文献求助10
9秒前
freyaaaaa应助半颜采纳,获得30
9秒前
9秒前
汉堡包应助诚心不凡采纳,获得10
10秒前
表示肯定发布了新的文献求助10
10秒前
12秒前
慕青应助科研渣渣采纳,获得10
12秒前
Akim应助star采纳,获得10
12秒前
晴朗完成签到,获得积分20
12秒前
13秒前
脑洞疼应助唧唧复唧唧采纳,获得10
13秒前
Desperate发布了新的文献求助10
13秒前
我是老大应助洁净雨采纳,获得10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507809
求助须知:如何正确求助?哪些是违规求助? 4603354
关于积分的说明 14484843
捐赠科研通 4537308
什么是DOI,文献DOI怎么找? 2486632
邀请新用户注册赠送积分活动 1469167
关于科研通互助平台的介绍 1441536