材料科学
碳纤维
催化作用
电池(电)
多硫化物
化学工程
硫黄
锂(药物)
密度泛函理论
吸附
异质结
硫系化合物
纳米技术
过渡金属
电极
化学
光电子学
复合材料
冶金
物理化学
有机化学
电解质
复合数
医学
功率(物理)
物理
计算化学
量子力学
工程类
内分泌学
作者
Zhentao Nie,Feng Xu,Haodong Liu,Haoyang Wang,Yitong Jiao,Weiguo Zhu,Qian Wang,Yibo Yan,Jixin Zhu
标识
DOI:10.1016/j.cej.2023.148433
摘要
The shuttle effect of polysulfides and short cycling life are serious obstacles to the commercialization of lithium–sulfur (Li–S) batteries. One of the effective solutions is the use of polar materials as electrocatalysts to increase the conversion and adsorption efficiency of polysulfides in Li–S cells. Herein, an ingenious design of hierarchical hollow nanoboxes composed of ultrathin C and MoSe2-x nanosheets was successfully fabricated via the stencil etching and selenization processes. The peculiar nanoboxes architecture exhibited plentiful catalytic active sites for polysulfides due to abundant outer nanosheets. Particularly, density functional theory (DFT) calculations demonstrated that the existing Se vacancies of C-MoSe2-x nanoboxes can validly suppress the shuttle effect of Li–S batteries when they serve as catalysts to modify separators. As a result, the Li–S battery-based C-MoSe2-x functional interlayer showed excellent discharge capacity and cycling life of 528.36 mAh/g (470.20 mAh/g) after 500 cycles at a discharge current of 0.5 C (1 C), and delivered 440.61 mAh/g even after 150 cycles at 0.1 C with an S loading of 5 mg cm−2. This work provides a novel design for carbon-based transition metal chalcogenide hybridized materials and offers insightful perspectives for other energy fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI