亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A weighted distance-based dynamic ensemble regression framework for gastric cancer survival time prediction

计算机科学 集合预报 回归 集成学习 聚类分析 灵活性(工程) 数据挖掘 相似性(几何) 均方误差 人工智能 回归分析 特征(语言学) 机器学习 统计 数学 语言学 哲学 图像(数学)
作者
Liangchen Xu,Chonghui Guo,Mucan Liu
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:147: 102740-102740 被引量:2
标识
DOI:10.1016/j.artmed.2023.102740
摘要

Accurate prediction of gastric cancer patient survival time is essential for clinical decision-making. However, unified static models lack specificity and flexibility in predictions owing to the varying survival outcomes among gastric cancer patients. We address these problems by using an ensemble learning approach and adaptively assigning greater weights to similar patients to make more targeted predictions when predicting an individual’s survival time. We treat these problems as regression problems and introduce a weighted dynamic ensemble regression framework. To better identify similar patients, we devise a method to measure patient similarity, considering the diverse impacts of features. Subsequently, we use this measure to design both a weighted K-means clustering method and a fuzzy K-means sampling technique to group patients and train corresponding base regressors. To achieve more targeted predictions, we calculate the weight of each base regressor based on the similarity between the patient to be predicted and the patient clusters, culminating in the integration of the results. The model is validated on a dataset of 7,791 patients, outperforming other models in terms of three evaluation metrics, namely, the root mean square error, mean absolute error, and the coefficient of determination. The weighted dynamic ensemble regression strategy can improve the baseline model by 1.75%, 2.12%, and 13.45% in terms of the three respective metrics while also mitigating the imbalanced survival time distribution issue. This enhanced performance has been statistically validated, even when tested on six public datasets with different sizes. By considering feature variations, patients with distinct survival profiles can be effectively differentiated, and the model predictive performance can be enhanced. The results generated by our proposed model can be invaluable in guiding decisions related to treatment plans and resource allocation. Furthermore, the model has the potential for broader applications in prognosis for other types of cancers or similar regression problems in various domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mashibeo完成签到,获得积分10
47秒前
47秒前
1分钟前
ygl0217发布了新的文献求助10
1分钟前
ygl0217完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
研友_nEWRJ8完成签到,获得积分10
1分钟前
李思完成签到 ,获得积分10
3分钟前
Ava应助Vce April采纳,获得10
3分钟前
陈甸甸完成签到 ,获得积分10
3分钟前
3分钟前
华仔应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
衷初发布了新的文献求助10
3分钟前
脑洞疼应助衷初采纳,获得10
3分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
曲聋五完成签到 ,获得积分10
5分钟前
6分钟前
草木青发布了新的文献求助10
6分钟前
zzgpku完成签到,获得积分0
6分钟前
6分钟前
6分钟前
领导范儿应助璀璨的饺子采纳,获得10
7分钟前
震动的听枫完成签到,获得积分10
7分钟前
疯狂大泡芙完成签到,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
香蕉觅云应助科研通管家采纳,获得20
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
SciGPT应助科研通管家采纳,获得10
7分钟前
7分钟前
Panther完成签到,获得积分10
8分钟前
852应助璀璨的饺子采纳,获得10
8分钟前
9分钟前
三点水发布了新的文献求助10
9分钟前
Magali发布了新的文献求助30
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422876
求助须知:如何正确求助?哪些是违规求助? 3023268
关于积分的说明 8903915
捐赠科研通 2710663
什么是DOI,文献DOI怎么找? 1486639
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682330