A weighted distance-based dynamic ensemble regression framework for gastric cancer survival time prediction

计算机科学 集合预报 回归 集成学习 聚类分析 灵活性(工程) 数据挖掘 相似性(几何) 均方误差 人工智能 回归分析 特征(语言学) 机器学习 统计 数学 语言学 哲学 图像(数学)
作者
Liangchen Xu,Chonghui Guo,Mucan Liu
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:147: 102740-102740 被引量:2
标识
DOI:10.1016/j.artmed.2023.102740
摘要

Accurate prediction of gastric cancer patient survival time is essential for clinical decision-making. However, unified static models lack specificity and flexibility in predictions owing to the varying survival outcomes among gastric cancer patients. We address these problems by using an ensemble learning approach and adaptively assigning greater weights to similar patients to make more targeted predictions when predicting an individual’s survival time. We treat these problems as regression problems and introduce a weighted dynamic ensemble regression framework. To better identify similar patients, we devise a method to measure patient similarity, considering the diverse impacts of features. Subsequently, we use this measure to design both a weighted K-means clustering method and a fuzzy K-means sampling technique to group patients and train corresponding base regressors. To achieve more targeted predictions, we calculate the weight of each base regressor based on the similarity between the patient to be predicted and the patient clusters, culminating in the integration of the results. The model is validated on a dataset of 7,791 patients, outperforming other models in terms of three evaluation metrics, namely, the root mean square error, mean absolute error, and the coefficient of determination. The weighted dynamic ensemble regression strategy can improve the baseline model by 1.75%, 2.12%, and 13.45% in terms of the three respective metrics while also mitigating the imbalanced survival time distribution issue. This enhanced performance has been statistically validated, even when tested on six public datasets with different sizes. By considering feature variations, patients with distinct survival profiles can be effectively differentiated, and the model predictive performance can be enhanced. The results generated by our proposed model can be invaluable in guiding decisions related to treatment plans and resource allocation. Furthermore, the model has the potential for broader applications in prognosis for other types of cancers or similar regression problems in various domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助summer采纳,获得10
1秒前
科研通AI5应助在不在不在采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
在水一方应助hfmaize111采纳,获得10
3秒前
3秒前
无花果应助光亮的太阳采纳,获得10
5秒前
5秒前
科研通AI6应助DLa-feng采纳,获得10
6秒前
英俊的铭应助小星星采纳,获得10
6秒前
7秒前
7秒前
jimmy完成签到,获得积分10
8秒前
万能图书馆应助jingyao采纳,获得10
8秒前
8秒前
阿坤完成签到,获得积分10
8秒前
小可爱完成签到 ,获得积分10
10秒前
纹银完成签到,获得积分10
12秒前
jimmy发布了新的文献求助30
13秒前
热热完成签到 ,获得积分10
15秒前
17秒前
所所应助可可采纳,获得10
17秒前
大林完成签到,获得积分10
17秒前
君子如风完成签到,获得积分10
17秒前
Lucas应助猪猪hero采纳,获得10
17秒前
酷波er应助xiaojiu采纳,获得50
18秒前
plddbc完成签到,获得积分10
18秒前
完美梨愁完成签到 ,获得积分10
19秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
haha完成签到 ,获得积分10
22秒前
着急的雪冥完成签到,获得积分10
23秒前
JamesPei应助杨惠子采纳,获得10
24秒前
25秒前
25秒前
闪闪星星完成签到,获得积分10
26秒前
26秒前
可乐可口完成签到,获得积分10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011838
求助须知:如何正确求助?哪些是违规求助? 4253162
关于积分的说明 13253185
捐赠科研通 4055874
什么是DOI,文献DOI怎么找? 2218424
邀请新用户注册赠送积分活动 1228027
关于科研通互助平台的介绍 1150278