A weighted distance-based dynamic ensemble regression framework for gastric cancer survival time prediction

计算机科学 集合预报 回归 集成学习 聚类分析 灵活性(工程) 数据挖掘 相似性(几何) 均方误差 人工智能 回归分析 特征(语言学) 机器学习 统计 数学 语言学 哲学 图像(数学)
作者
Liangchen Xu,Chonghui Guo,Mucan Liu
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:147: 102740-102740 被引量:2
标识
DOI:10.1016/j.artmed.2023.102740
摘要

Accurate prediction of gastric cancer patient survival time is essential for clinical decision-making. However, unified static models lack specificity and flexibility in predictions owing to the varying survival outcomes among gastric cancer patients. We address these problems by using an ensemble learning approach and adaptively assigning greater weights to similar patients to make more targeted predictions when predicting an individual’s survival time. We treat these problems as regression problems and introduce a weighted dynamic ensemble regression framework. To better identify similar patients, we devise a method to measure patient similarity, considering the diverse impacts of features. Subsequently, we use this measure to design both a weighted K-means clustering method and a fuzzy K-means sampling technique to group patients and train corresponding base regressors. To achieve more targeted predictions, we calculate the weight of each base regressor based on the similarity between the patient to be predicted and the patient clusters, culminating in the integration of the results. The model is validated on a dataset of 7,791 patients, outperforming other models in terms of three evaluation metrics, namely, the root mean square error, mean absolute error, and the coefficient of determination. The weighted dynamic ensemble regression strategy can improve the baseline model by 1.75%, 2.12%, and 13.45% in terms of the three respective metrics while also mitigating the imbalanced survival time distribution issue. This enhanced performance has been statistically validated, even when tested on six public datasets with different sizes. By considering feature variations, patients with distinct survival profiles can be effectively differentiated, and the model predictive performance can be enhanced. The results generated by our proposed model can be invaluable in guiding decisions related to treatment plans and resource allocation. Furthermore, the model has the potential for broader applications in prognosis for other types of cancers or similar regression problems in various domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xin发布了新的文献求助10
刚刚
彭于晏应助mnm采纳,获得10
1秒前
乔达摩完成签到 ,获得积分0
2秒前
CipherSage应助dw采纳,获得10
2秒前
3秒前
4秒前
陈瑞完成签到,获得积分10
4秒前
123发布了新的文献求助10
5秒前
6秒前
6秒前
江睦月完成签到,获得积分10
7秒前
7秒前
Orange应助Iris采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
winwin_chan完成签到,获得积分10
8秒前
9秒前
9秒前
东方元语应助无极微光采纳,获得20
10秒前
10秒前
Shenliheng发布了新的文献求助10
11秒前
Zhe完成签到,获得积分10
12秒前
Rachel完成签到,获得积分10
12秒前
zhongxia完成签到 ,获得积分10
12秒前
自律的小钰完成签到,获得积分10
13秒前
高高发布了新的文献求助10
14秒前
15秒前
15秒前
小石头发布了新的文献求助10
16秒前
16秒前
19秒前
lin发布了新的文献求助10
20秒前
junze完成签到,获得积分10
21秒前
乔达摩悉达多完成签到 ,获得积分10
21秒前
21秒前
Lucas应助魅力小白菜采纳,获得10
22秒前
局外人发布了新的文献求助10
22秒前
求学完成签到 ,获得积分10
22秒前
Akim应助刚睡醒采纳,获得10
23秒前
哈哈发布了新的文献求助10
25秒前
LYL小怪兽完成签到 ,获得积分10
27秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687