A weighted distance-based dynamic ensemble regression framework for gastric cancer survival time prediction

计算机科学 集合预报 回归 集成学习 聚类分析 灵活性(工程) 数据挖掘 相似性(几何) 均方误差 人工智能 回归分析 特征(语言学) 机器学习 统计 数学 语言学 哲学 图像(数学)
作者
Liangchen Xu,Chonghui Guo,Mucan Liu
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:147: 102740-102740 被引量:2
标识
DOI:10.1016/j.artmed.2023.102740
摘要

Accurate prediction of gastric cancer patient survival time is essential for clinical decision-making. However, unified static models lack specificity and flexibility in predictions owing to the varying survival outcomes among gastric cancer patients. We address these problems by using an ensemble learning approach and adaptively assigning greater weights to similar patients to make more targeted predictions when predicting an individual’s survival time. We treat these problems as regression problems and introduce a weighted dynamic ensemble regression framework. To better identify similar patients, we devise a method to measure patient similarity, considering the diverse impacts of features. Subsequently, we use this measure to design both a weighted K-means clustering method and a fuzzy K-means sampling technique to group patients and train corresponding base regressors. To achieve more targeted predictions, we calculate the weight of each base regressor based on the similarity between the patient to be predicted and the patient clusters, culminating in the integration of the results. The model is validated on a dataset of 7,791 patients, outperforming other models in terms of three evaluation metrics, namely, the root mean square error, mean absolute error, and the coefficient of determination. The weighted dynamic ensemble regression strategy can improve the baseline model by 1.75%, 2.12%, and 13.45% in terms of the three respective metrics while also mitigating the imbalanced survival time distribution issue. This enhanced performance has been statistically validated, even when tested on six public datasets with different sizes. By considering feature variations, patients with distinct survival profiles can be effectively differentiated, and the model predictive performance can be enhanced. The results generated by our proposed model can be invaluable in guiding decisions related to treatment plans and resource allocation. Furthermore, the model has the potential for broader applications in prognosis for other types of cancers or similar regression problems in various domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默完成签到 ,获得积分10
刚刚
刚刚
1秒前
linnnn发布了新的文献求助10
1秒前
1秒前
JxJ完成签到,获得积分10
2秒前
王思文发布了新的文献求助10
3秒前
SciGPT应助夕荀采纳,获得10
3秒前
3秒前
4秒前
科研通AI6应助小黄采纳,获得10
4秒前
鲤鱼曼易发布了新的文献求助10
4秒前
王梦如发布了新的文献求助10
4秒前
sbt完成签到 ,获得积分10
4秒前
薄荷发布了新的文献求助10
5秒前
Hello应助谨慎小天鹅采纳,获得10
6秒前
7秒前
zlf发布了新的文献求助30
7秒前
詹慧子完成签到,获得积分10
7秒前
7秒前
勤恳雅莉应助潇潇雨歇采纳,获得10
9秒前
9秒前
9秒前
在水一方应助好好的采纳,获得10
10秒前
linnnn完成签到,获得积分10
11秒前
完美世界应助sijietan采纳,获得10
12秒前
张卓情发布了新的文献求助10
12秒前
13秒前
01完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
夕荀发布了新的文献求助10
14秒前
zho应助无语的安卉采纳,获得10
15秒前
dew应助FanMaster采纳,获得10
15秒前
15秒前
15秒前
明亮睿渊完成签到 ,获得积分10
15秒前
义气的松鼠完成签到 ,获得积分10
16秒前
果一发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589068
求助须知:如何正确求助?哪些是违规求助? 4672334
关于积分的说明 14790349
捐赠科研通 4627486
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500706
关于科研通互助平台的介绍 1468396