A weighted distance-based dynamic ensemble regression framework for gastric cancer survival time prediction

计算机科学 集合预报 回归 集成学习 聚类分析 灵活性(工程) 数据挖掘 相似性(几何) 均方误差 人工智能 回归分析 特征(语言学) 机器学习 统计 数学 语言学 哲学 图像(数学)
作者
Liangchen Xu,Chonghui Guo,Mucan Liu
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:147: 102740-102740 被引量:2
标识
DOI:10.1016/j.artmed.2023.102740
摘要

Accurate prediction of gastric cancer patient survival time is essential for clinical decision-making. However, unified static models lack specificity and flexibility in predictions owing to the varying survival outcomes among gastric cancer patients. We address these problems by using an ensemble learning approach and adaptively assigning greater weights to similar patients to make more targeted predictions when predicting an individual’s survival time. We treat these problems as regression problems and introduce a weighted dynamic ensemble regression framework. To better identify similar patients, we devise a method to measure patient similarity, considering the diverse impacts of features. Subsequently, we use this measure to design both a weighted K-means clustering method and a fuzzy K-means sampling technique to group patients and train corresponding base regressors. To achieve more targeted predictions, we calculate the weight of each base regressor based on the similarity between the patient to be predicted and the patient clusters, culminating in the integration of the results. The model is validated on a dataset of 7,791 patients, outperforming other models in terms of three evaluation metrics, namely, the root mean square error, mean absolute error, and the coefficient of determination. The weighted dynamic ensemble regression strategy can improve the baseline model by 1.75%, 2.12%, and 13.45% in terms of the three respective metrics while also mitigating the imbalanced survival time distribution issue. This enhanced performance has been statistically validated, even when tested on six public datasets with different sizes. By considering feature variations, patients with distinct survival profiles can be effectively differentiated, and the model predictive performance can be enhanced. The results generated by our proposed model can be invaluable in guiding decisions related to treatment plans and resource allocation. Furthermore, the model has the potential for broader applications in prognosis for other types of cancers or similar regression problems in various domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weicaixia发布了新的文献求助10
1秒前
王家昌发布了新的文献求助10
2秒前
蘑菇葵发布了新的文献求助20
2秒前
3秒前
dopamine完成签到,获得积分10
3秒前
FashionBoy应助雨愈采纳,获得10
3秒前
大个应助里里采纳,获得10
3秒前
5秒前
堡主发布了新的文献求助10
6秒前
8秒前
fengyu完成签到 ,获得积分10
8秒前
fang20130608发布了新的文献求助10
9秒前
kosmos完成签到,获得积分10
9秒前
Rrr完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
12秒前
平安如意完成签到,获得积分10
13秒前
小二郎应助Maximuszhao采纳,获得10
14秒前
ding应助王家昌采纳,获得10
14秒前
14秒前
英姑应助Jess采纳,获得10
14秒前
enzyme发布了新的文献求助10
16秒前
16秒前
重要的平灵完成签到 ,获得积分10
17秒前
17秒前
17秒前
周同庆发布了新的文献求助10
18秒前
nnnnn发布了新的文献求助30
19秒前
19秒前
丘比特应助nicholas采纳,获得10
19秒前
20秒前
20秒前
要减肥香水完成签到,获得积分10
21秒前
22秒前
22秒前
科研通AI2S应助哭泣代容采纳,获得10
23秒前
隐形期待完成签到,获得积分10
23秒前
追寻念云完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5359849
求助须知:如何正确求助?哪些是违规求助? 4490590
关于积分的说明 13979660
捐赠科研通 4393088
什么是DOI,文献DOI怎么找? 2413195
邀请新用户注册赠送积分活动 1405995
关于科研通互助平台的介绍 1380343