A weighted distance-based dynamic ensemble regression framework for gastric cancer survival time prediction

计算机科学 集合预报 回归 集成学习 聚类分析 灵活性(工程) 数据挖掘 相似性(几何) 均方误差 人工智能 回归分析 特征(语言学) 机器学习 统计 数学 语言学 哲学 图像(数学)
作者
Liangchen Xu,Chonghui Guo,Mucan Liu
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:147: 102740-102740 被引量:2
标识
DOI:10.1016/j.artmed.2023.102740
摘要

Accurate prediction of gastric cancer patient survival time is essential for clinical decision-making. However, unified static models lack specificity and flexibility in predictions owing to the varying survival outcomes among gastric cancer patients. We address these problems by using an ensemble learning approach and adaptively assigning greater weights to similar patients to make more targeted predictions when predicting an individual’s survival time. We treat these problems as regression problems and introduce a weighted dynamic ensemble regression framework. To better identify similar patients, we devise a method to measure patient similarity, considering the diverse impacts of features. Subsequently, we use this measure to design both a weighted K-means clustering method and a fuzzy K-means sampling technique to group patients and train corresponding base regressors. To achieve more targeted predictions, we calculate the weight of each base regressor based on the similarity between the patient to be predicted and the patient clusters, culminating in the integration of the results. The model is validated on a dataset of 7,791 patients, outperforming other models in terms of three evaluation metrics, namely, the root mean square error, mean absolute error, and the coefficient of determination. The weighted dynamic ensemble regression strategy can improve the baseline model by 1.75%, 2.12%, and 13.45% in terms of the three respective metrics while also mitigating the imbalanced survival time distribution issue. This enhanced performance has been statistically validated, even when tested on six public datasets with different sizes. By considering feature variations, patients with distinct survival profiles can be effectively differentiated, and the model predictive performance can be enhanced. The results generated by our proposed model can be invaluable in guiding decisions related to treatment plans and resource allocation. Furthermore, the model has the potential for broader applications in prognosis for other types of cancers or similar regression problems in various domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草履虫完成签到,获得积分10
刚刚
虚拟初之完成签到,获得积分10
刚刚
欣欣完成签到,获得积分10
刚刚
土豪的行云完成签到,获得积分10
刚刚
星星发布了新的文献求助10
1秒前
1秒前
溪风不渡发布了新的文献求助10
2秒前
黄科研完成签到,获得积分10
2秒前
carrie完成签到,获得积分20
2秒前
早日发文章完成签到 ,获得积分10
2秒前
Sevi完成签到,获得积分10
2秒前
麦辣鸡腿堡完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
搜集达人应助流萤采纳,获得10
4秒前
冷酷严青发布了新的文献求助10
4秒前
Avae完成签到,获得积分10
4秒前
道中道完成签到,获得积分10
4秒前
周周完成签到,获得积分10
5秒前
苏世誉完成签到,获得积分10
5秒前
小乐儿~完成签到,获得积分10
5秒前
小鹿完成签到,获得积分10
5秒前
6秒前
sad发布了新的文献求助10
6秒前
於傲松发布了新的文献求助10
6秒前
6秒前
liangguangyuan完成签到 ,获得积分10
6秒前
123987完成签到,获得积分10
6秒前
6秒前
打打应助Luhh采纳,获得10
6秒前
7秒前
周雪峰完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
无花果应助科研菜狗采纳,获得10
8秒前
杨之玉发布了新的文献求助10
8秒前
张芙瑶完成签到,获得积分10
8秒前
tgh完成签到,获得积分10
8秒前
李萍萍发布了新的文献求助10
9秒前
Zqq完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997