A weighted distance-based dynamic ensemble regression framework for gastric cancer survival time prediction

计算机科学 集合预报 回归 集成学习 聚类分析 灵活性(工程) 数据挖掘 相似性(几何) 均方误差 人工智能 回归分析 特征(语言学) 机器学习 统计 数学 语言学 哲学 图像(数学)
作者
Liangchen Xu,Chonghui Guo,Mucan Liu
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:147: 102740-102740 被引量:2
标识
DOI:10.1016/j.artmed.2023.102740
摘要

Accurate prediction of gastric cancer patient survival time is essential for clinical decision-making. However, unified static models lack specificity and flexibility in predictions owing to the varying survival outcomes among gastric cancer patients. We address these problems by using an ensemble learning approach and adaptively assigning greater weights to similar patients to make more targeted predictions when predicting an individual’s survival time. We treat these problems as regression problems and introduce a weighted dynamic ensemble regression framework. To better identify similar patients, we devise a method to measure patient similarity, considering the diverse impacts of features. Subsequently, we use this measure to design both a weighted K-means clustering method and a fuzzy K-means sampling technique to group patients and train corresponding base regressors. To achieve more targeted predictions, we calculate the weight of each base regressor based on the similarity between the patient to be predicted and the patient clusters, culminating in the integration of the results. The model is validated on a dataset of 7,791 patients, outperforming other models in terms of three evaluation metrics, namely, the root mean square error, mean absolute error, and the coefficient of determination. The weighted dynamic ensemble regression strategy can improve the baseline model by 1.75%, 2.12%, and 13.45% in terms of the three respective metrics while also mitigating the imbalanced survival time distribution issue. This enhanced performance has been statistically validated, even when tested on six public datasets with different sizes. By considering feature variations, patients with distinct survival profiles can be effectively differentiated, and the model predictive performance can be enhanced. The results generated by our proposed model can be invaluable in guiding decisions related to treatment plans and resource allocation. Furthermore, the model has the potential for broader applications in prognosis for other types of cancers or similar regression problems in various domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lll发布了新的文献求助10
1秒前
asdfzxcv应助淡淡小霜采纳,获得10
1秒前
领导范儿应助kxm采纳,获得10
1秒前
2秒前
欢喜梦桃完成签到,获得积分10
2秒前
3秒前
萝卜卷心菜完成签到 ,获得积分10
3秒前
3秒前
完美世界应助执着谷兰采纳,获得10
4秒前
布蓝图完成签到 ,获得积分10
4秒前
QZR完成签到,获得积分10
5秒前
刻苦秋尽发布了新的文献求助10
5秒前
实验鱼发布了新的文献求助10
6秒前
tangtang787发布了新的文献求助10
6秒前
CipherSage应助啦啦啦采纳,获得10
6秒前
烟花应助明亮的烧鹅采纳,获得30
6秒前
李乐完成签到,获得积分10
7秒前
7秒前
Hao发布了新的文献求助10
8秒前
wy.he应助zhuvivi采纳,获得10
8秒前
莓芙完成签到,获得积分10
8秒前
lll完成签到,获得积分10
9秒前
hao完成签到,获得积分10
12秒前
万能图书馆应助美好斓采纳,获得30
13秒前
13秒前
辛勤秋双完成签到,获得积分10
13秒前
17完成签到,获得积分10
14秒前
14秒前
七氏关注了科研通微信公众号
16秒前
Orange应助fudanlihan采纳,获得10
16秒前
明亮的烧鹅完成签到,获得积分20
17秒前
星鱼关注了科研通微信公众号
18秒前
HtheJ完成签到,获得积分10
18秒前
18秒前
MISSIW完成签到,获得积分10
18秒前
所所应助阿达采纳,获得10
18秒前
18秒前
李某人完成签到,获得积分10
19秒前
山海关外完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652750
求助须知:如何正确求助?哪些是违规求助? 4788147
关于积分的说明 15061398
捐赠科研通 4811163
什么是DOI,文献DOI怎么找? 2573713
邀请新用户注册赠送积分活动 1529555
关于科研通互助平台的介绍 1488319