A weighted distance-based dynamic ensemble regression framework for gastric cancer survival time prediction

计算机科学 集合预报 回归 集成学习 聚类分析 灵活性(工程) 数据挖掘 相似性(几何) 均方误差 人工智能 回归分析 特征(语言学) 机器学习 统计 数学 图像(数学) 语言学 哲学
作者
Liangchen Xu,Chonghui Guo,Mucan Liu
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:147: 102740-102740 被引量:2
标识
DOI:10.1016/j.artmed.2023.102740
摘要

Accurate prediction of gastric cancer patient survival time is essential for clinical decision-making. However, unified static models lack specificity and flexibility in predictions owing to the varying survival outcomes among gastric cancer patients. We address these problems by using an ensemble learning approach and adaptively assigning greater weights to similar patients to make more targeted predictions when predicting an individual’s survival time. We treat these problems as regression problems and introduce a weighted dynamic ensemble regression framework. To better identify similar patients, we devise a method to measure patient similarity, considering the diverse impacts of features. Subsequently, we use this measure to design both a weighted K-means clustering method and a fuzzy K-means sampling technique to group patients and train corresponding base regressors. To achieve more targeted predictions, we calculate the weight of each base regressor based on the similarity between the patient to be predicted and the patient clusters, culminating in the integration of the results. The model is validated on a dataset of 7,791 patients, outperforming other models in terms of three evaluation metrics, namely, the root mean square error, mean absolute error, and the coefficient of determination. The weighted dynamic ensemble regression strategy can improve the baseline model by 1.75%, 2.12%, and 13.45% in terms of the three respective metrics while also mitigating the imbalanced survival time distribution issue. This enhanced performance has been statistically validated, even when tested on six public datasets with different sizes. By considering feature variations, patients with distinct survival profiles can be effectively differentiated, and the model predictive performance can be enhanced. The results generated by our proposed model can be invaluable in guiding decisions related to treatment plans and resource allocation. Furthermore, the model has the potential for broader applications in prognosis for other types of cancers or similar regression problems in various domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liberation完成签到 ,获得积分0
刚刚
stiger完成签到,获得积分10
2秒前
QQ完成签到,获得积分10
3秒前
七月完成签到,获得积分10
3秒前
3秒前
超帅的又槐完成签到,获得积分10
5秒前
WW完成签到 ,获得积分10
7秒前
天水张家辉完成签到,获得积分10
7秒前
Epiphany发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
14秒前
踏实的怜菡完成签到 ,获得积分10
16秒前
甜甜圈完成签到 ,获得积分10
19秒前
代扁扁完成签到 ,获得积分10
20秒前
Epiphany完成签到,获得积分10
25秒前
26秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
jiangjiang完成签到,获得积分10
27秒前
落落完成签到 ,获得积分0
28秒前
32秒前
wanci应助方俊驰采纳,获得10
32秒前
37秒前
HCT完成签到,获得积分10
41秒前
方俊驰发布了新的文献求助10
43秒前
long完成签到,获得积分10
44秒前
48秒前
鲲鹏完成签到 ,获得积分10
55秒前
Wai完成签到 ,获得积分10
57秒前
许愿完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助30
1分钟前
tianmj发布了新的文献求助10
1分钟前
天天完成签到 ,获得积分10
1分钟前
迅速的念芹完成签到 ,获得积分10
1分钟前
风中的向卉完成签到 ,获得积分10
1分钟前
zenabia完成签到 ,获得积分10
1分钟前
lilaccalla完成签到 ,获得积分10
1分钟前
1分钟前
幽默的妍完成签到 ,获得积分10
1分钟前
AEROU完成签到 ,获得积分10
1分钟前
温暖的定格完成签到,获得积分10
1分钟前
涛1完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015541
求助须知:如何正确求助?哪些是违规求助? 3555522
关于积分的说明 11318076
捐赠科研通 3288696
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015