FedSea: Federated Learning via Selective Feature Alignment for Non-IID Multimodal Data

计算机科学 鉴别器 特征(语言学) 人工智能 独立同分布随机变量 机器学习 编码器 特征向量 领域(数学分析) 数据挖掘 数学 随机变量 统计 操作系统 探测器 数学分析 哲学 电信 语言学
作者
Min Tan,Yinfu Feng,Lingqiang Chu,Jing-Cheng Shi,Rong Xiao,Hai-Hong Tang,Jun Yu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5807-5822 被引量:2
标识
DOI:10.1109/tmm.2023.3340109
摘要

The growing demands for privacy protection challenge the joint training of one model by leveraging multiple datasets. Federated learning (FL) provides a new way to overcome this challenge and has attracted many research interests, which enables multiple parties to collaboratively train a machine learning model without exchanging their local data. Despite some success, the non-independent and identically distributed (non-IID) data distributions in different parties remain challenging and easily damage the performance of FL methods, specifically for the heterogeneous multimodal data. Existing FL studies on non-IID data settings are often dedicated to the label space, neglecting the non-IID issues in feature space, thus limiting their performance when the parties with non-IID multimodal data. This paper proposes a new Fed erated learning method via Se lective feature A lignment (FedSea) to align representations across multiple parties in the feature space. FedSea uses a domain adversarial learning framework consisting of an affine-transform-based generator and a gradient-reversal-based client discriminator to perform IID transformation and reduce data source distinguishability, respectively. An attention-based mask module and a feature IID confidence quantification method are introduced to effectively address the diverse feature non-IID levels across multimodal data. Comprehensive experiments are conducted on three widely-used public datasets and one large-scale industrial dataset, showing FedSea has: 1) better performance than state-of-the-art FL methods on both multimodal and single-modal datasets; 2) superior feature alignment ability on non-IID datasets, and 3) good model interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王南晰完成签到 ,获得积分10
2秒前
fafachoi完成签到,获得积分10
4秒前
NexusExplorer应助zhx245259630采纳,获得10
4秒前
对对队发布了新的文献求助10
5秒前
Auston_zhong应助tianxiong采纳,获得10
5秒前
西猫发布了新的文献求助10
5秒前
酷炫便当完成签到 ,获得积分10
6秒前
科研通AI2S应助sdl采纳,获得10
6秒前
科研小民工应助飞鱼采纳,获得200
8秒前
8秒前
大壮发布了新的文献求助10
9秒前
11秒前
11秒前
哈哈哈哈嘻嘻嘻完成签到 ,获得积分10
14秒前
sdl发布了新的文献求助10
15秒前
Owen应助kkkkkoi采纳,获得10
16秒前
melody发布了新的文献求助30
16秒前
Amber完成签到,获得积分20
18秒前
22秒前
科研小民工应助tianxiong采纳,获得30
22秒前
22秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
Solarenergy完成签到,获得积分0
27秒前
西大喜发布了新的文献求助10
27秒前
kkkkkoi发布了新的文献求助10
28秒前
成就的外套完成签到,获得积分10
29秒前
毛头侠发布了新的文献求助10
29秒前
Auston_zhong应助鱼鱼子999采纳,获得10
30秒前
77发布了新的文献求助10
31秒前
独见晓焉完成签到,获得积分10
31秒前
31秒前
32秒前
tianxiong发布了新的文献求助10
33秒前
ww完成签到,获得积分10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730482
求助须知:如何正确求助?哪些是违规求助? 3275115
关于积分的说明 9991221
捐赠科研通 2990742
什么是DOI,文献DOI怎么找? 1641231
邀请新用户注册赠送积分活动 779622
科研通“疑难数据库(出版商)”最低求助积分说明 748331