化学
催化作用
铜
电化学
选择性
密度泛函理论
乙烯
物理化学
化学工程
无机化学
电极
计算化学
有机化学
工程类
作者
Wanfeng Xiong,Duan–Hui Si,Hong-Fang Li,Xianmeng Song,Tao Wang,Yuan‐Biao Huang,Tian‐Fu Liu,Teng Zhang,Rong Cao
摘要
Copper (Cu), with the advantage of producing a deep reduction product, is a unique catalyst for the electrochemical reduction of CO2 (CO2RR). Designing a Cu-based catalyst to trigger CO2RR to a multicarbon product and understanding the accurate structure–activity relationship for elucidating reaction mechanisms still remain a challenge. Herein, we demonstrate a rational design of a core–shell structured silica-copper catalyst (p-Cu@m-SiO2) through Cu–Si direct bonding for efficient and selective CO2RR. The Cu–Si interface fulfills the inversion in CO2RR product selectivity. The product ratio of C2H4/CH4 changes from 0.6 to 14.4 after silica modification, and the current density reaches a high of up to 450 mA cm–2. The kinetic isotopic effect, in situ attenuated total reflection Fourier-transform infrared spectra, and density functional theory were applied to elucidate the reaction mechanism. The SiO2 shell stabilizes the *H intermediate by forming Si–O–H and inhibits the hydrogen evolution reaction effectively. Moreover, the direct-bonded Cu–Si interface makes bare Cu sites with larger charge density. Such bare Cu sites and Si–O–H sites stabilized the *CHO and activated the *CO, promoting the coupling of *CHO and *CO intermediates to form C2H4. This work provides a promising strategy for designing Cu-based catalysts with high C2H4 catalytic activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI