Mechanically strong and fully transparent PMMA composite with greatly improved toughness and impact strength incorporating PEBA nanofibrils

材料科学 极限抗拉强度 韧性 复合材料 艾氏冲击强度试验 复合数 弹性体 开裂 聚合物
作者
Saadman Sakib Rahman,Mayesha Binte Mahmud,Amirmehdi Salehi,Ali Reza Monfared,Md Akibul Islam,Tobin Filleter,Patrick Lee,Chul B. Park
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:480: 148311-148311 被引量:9
标识
DOI:10.1016/j.cej.2023.148311
摘要

Improving the tensile toughness and impact strength of poly(methyl methacrylate) (PMMA) involves a trade-off, the improvements often come at the expense of reduced tensile strength, stiffness, transparency, and other crucial properties. In this article, we report a facile method to enhance the tensile toughness and impact strength of PMMA simultaneously, without sacrificing its tensile strength, stiffness, transparency, glass transition temperature, and scratch resistance. We demonstrate that the inclusion of only 3 wt% of polyether block amide elastomer (PEBA) nanofibrils (diameters ranging from ∼ 20 to 164 nm) in PMMA and ∼ 0.6 wt% of a random ethylene-glycidyl methacrylate copolymer (E-GMA) selectively at the interface resulted in a remarkable increase of ∼ 169 % in its elongation at break, ∼188 % in tensile toughness, and ∼ 87 % in notched Izod impact strength. Importantly, by incorporating such a minimal content of rubbery materials, these improvements were attained without compromising any of its major properties. Herein, we also demonstrate that multiple crazing was the primary toughening mechanism in the composites at a slow deformation speed (i.e., tensile testing), while rubber cavitation and subsequent ductile shear yielding of the surrounding matrix (enabled by the presence of E-GMA at the interface) was the most dominant at a high deformation speed (i.e., notched Izod impact testing). The high-performance composites presented herein possess immense potential for use in applications requiring a unique combination of attributes such as high strength, stiffness, tensile toughness, impact strength, and optical transparency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
国服懒羊羊完成签到,获得积分10
刚刚
领导范儿应助ZTT采纳,获得10
刚刚
moon发布了新的文献求助10
1秒前
小宇发布了新的文献求助10
1秒前
1秒前
Neon0524完成签到 ,获得积分10
1秒前
HEIKU应助颜绫采纳,获得50
2秒前
2秒前
Jiayou Zhang完成签到,获得积分10
2秒前
高高迎蓉发布了新的文献求助10
2秒前
徐霜完成签到 ,获得积分10
3秒前
DDXXC完成签到,获得积分10
3秒前
忧郁的续完成签到,获得积分20
3秒前
陈强发布了新的文献求助30
3秒前
wzg666完成签到,获得积分10
4秒前
4秒前
爆米花应助找不到采纳,获得10
4秒前
任性的梦菲应助圈圈采纳,获得30
4秒前
5秒前
Ava应助踏实的烙采纳,获得10
5秒前
6秒前
ChangSZ应助speedness采纳,获得10
6秒前
自由基不能聚合完成签到,获得积分10
6秒前
shone发布了新的文献求助10
7秒前
烟花应助yug采纳,获得10
7秒前
科研cc发布了新的文献求助10
7秒前
你仔细听发布了新的文献求助10
7秒前
路之遥兮发布了新的文献求助10
8秒前
一平发布了新的文献求助10
8秒前
jerry完成签到,获得积分20
8秒前
搞怪便当完成签到,获得积分10
8秒前
8秒前
8秒前
布丁仔完成签到,获得积分10
9秒前
9秒前
9秒前
Hu111完成签到,获得积分10
9秒前
9秒前
关琦完成签到,获得积分10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672