材料科学
化学工程
电解质
纳米颗粒
介孔二氧化硅
离子电导率
纳米复合材料
介孔材料
聚合物
乙二醇
锂(药物)
混合材料
电化学
法拉第效率
纳米技术
电极
复合材料
有机化学
化学
物理化学
内分泌学
催化作用
工程类
医学
作者
Tae Young Kim,Susung Yun,J CHAE,Hee Joong Kim,U Hyeok Choi
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2023-12-22
标识
DOI:10.1021/acsaem.3c02182
摘要
For the development of high-energy-density lithium metal batteries (LMBs), we designed nanohybrid gel polymer electrolytes (NGPEs). In NGPEs, vinyl-functionalized mesoporous silica nanoparticles (VMSNs, as reinforcement fillers) are integrated with cross-linkable poly(ethylene glycol) (PEG) oligomers and an ionic species mixture of ionic liquid and Li salt via a UV curing process. Two types of mesoporous silica nanoparticles with and without vinyl groups (VMSN vs MSN) are synthesized via the surface grafting method and used to prepare NGPE-VMSN and NGPE-MSN, where the corresponding silica nanoparticles are chemically and physically dispersed into the PEG network, respectively. The hybrid PEG network-derived NGPEs with mesoporous silica nanoparticles show attractive electrolyte properties, i.e., high shear storage modulus (G′ = 1.1 × 106 Pa), high ionic conductivity (σdc = 1 × 10–4 S cm–1), and wide electrochemical stability window (ESW ∼ 4.5 V), at room temperature. The resultant NGPE in the Li|Li cell also shows long-term cyclic stability without short-circuiting over 1000 h under 0.1 mA cm–2, suggesting the NGPE's effectiveness in dendrite inhibition. Furthermore, the LiFePO4|NGPE|Li full cell presents a high specific capacity of 124 mAh g–1 at 0.5C and stable cycling performances with 100% capacity retention and 99.5% Coulombic efficiency after 190 cycles at 25 °C. The NGPE demonstrates a simple design principle for replacing liquid electrolytes with solid-state electrolytes, allowing for a perfect complex between inorganic silica nanoparticles and organic PEG gel network through vinyl bonds on the MSN surface and PEG terminal group for high-energy-density LMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI