MVP: Meta Visual Prompt Tuning for Few-Shot Remote Sensing Image Scene Classification

计算机科学 弹丸 人工智能 上下文图像分类 计算机视觉 遥感 图像(数学) 模式识别(心理学) 地质学 化学 有机化学
作者
Junjie Zhu,Yiying Li,K.C. Yang,Naiyang Guan,Zunlin Fan,Chunping Qiu,Xiaodong Yi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:3
标识
DOI:10.1109/tgrs.2024.3359599
摘要

Vision Transformer (ViT) models have recently emerged as powerful and versatile tools for various visual tasks. In this article, we investigate ViT in a more challenging scenario within the context of few-shot conditions. Recent work has achieved promising results in few-shot image classification by utilizing pre-trained vision transformer models. However, this work employs full fine-tuning for the downstream tasks, leading to significant overfitting and storage issues, especially in the remote sensing domain. In order to tackle these issues, we turn to the recently proposed Parameter-Efficient Tuning (PETuning) methods, which update only the newly added parameters while keeping the pre-trained backbone frozen. Inspired by these methods, we propose the Meta Visual Prompt Tuning (MVP) method. Specifically, we integrate the prompt-tuning-based PETuning method into the meta-learning framework and tailor it for remote sensing datasets, resulting in an efficient framework for Few-Shot Remote Sensing Scene Classification (FS-RSSC). Moreover, we introduce a novel data augmentation scheme that exploits patch embedding recombination to enhance the data diversity and quantity. This scheme is generalizable to any network that employs the ViT architecture as its backbone. Experimental results on the FS-RSSC benchmark demonstrate the superior performance of the proposed MVP over existing methods in various settings, including various-way-various-shot, various-way-one-shot, and cross-domain adaptation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助酷酷笑容采纳,获得10
刚刚
张婧媛完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
MingY完成签到,获得积分10
1秒前
OPV完成签到,获得积分0
2秒前
思无涯发布了新的文献求助10
2秒前
周梦琪关注了科研通微信公众号
3秒前
3秒前
3秒前
4秒前
Singularity发布了新的文献求助10
5秒前
6秒前
6秒前
852应助VeronicaChow01采纳,获得10
7秒前
7秒前
7秒前
7秒前
柏梦岚完成签到,获得积分20
7秒前
无明怀雪发布了新的文献求助10
8秒前
垃圾二硫自组装纳米粒完成签到,获得积分10
8秒前
9秒前
土豆发布了新的文献求助10
9秒前
finejade发布了新的文献求助10
10秒前
11秒前
跳跳虎完成签到,获得积分10
12秒前
丁真真发布了新的文献求助10
12秒前
咩咩咩完成签到 ,获得积分20
12秒前
le驳回了meng17应助
12秒前
王其超发布了新的文献求助10
13秒前
MOLLY发布了新的文献求助10
14秒前
无私的芹应助ashu采纳,获得10
14秒前
万能图书馆应助无明怀雪采纳,获得10
16秒前
8R60d8应助超爱你采纳,获得10
16秒前
16秒前
18秒前
TAOS发布了新的文献求助10
18秒前
现代的访曼应助chen采纳,获得20
20秒前
LLL发布了新的文献求助10
20秒前
20秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952648
求助须知:如何正确求助?哪些是违规求助? 3498110
关于积分的说明 11090445
捐赠科研通 3228721
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349