Meta-MolNet: A Cross-Domain Benchmark for Few Examples Drug Discovery

药物发现 水准点(测量) 领域(数学分析) 计算机科学 计算生物学 数据挖掘 数据科学 数学 生物信息学 生物 地理 地图学 数学分析
作者
Qiujie Lv,Guanxing Chen,Ziduo Yang,Weihe Zhong,Calvin Yu‐Chian Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:6
标识
DOI:10.1109/tnnls.2024.3359657
摘要

Predicting the pharmacological activity, toxicity, and pharmacokinetic properties of molecules is a central task in drug discovery. Existing machine learning methods are transferred from one resource rich molecular property to another data scarce property in the same scaffold dataset. However, existing models may produce fragile and highly uncertain predictions for new scaffold molecules. And these models were tested on different benchmarks, which seriously affected the quality of their evaluation results. In this article, we introduce Meta-MolNet, a collection of data benchmark and algorithms, which is a standard benchmark platform for measuring model generalization and uncertainty quantification capabilities. Meta-MolNet manages a wide range of molecular datasets with high ratio of molecules/scaffolds, which often leads to more difficult data shift and generalization problems. Furthermore, we propose a graph attention network based on cross-domain meta-learning, Meta-GAT, which uses bilevel optimization to learn meta-knowledge from the scaffold family molecular dataset in the source domain. Meta-GAT benefits from meta-knowledge that reduces the requirement of sample complexity to enable reliable predictions of new scaffold molecules in the target domain through internal iteration of a few examples. We evaluate existing methods as baselines for the community, and the Meta-MolNet benchmark demonstrates the effectiveness of measuring the proposed algorithm in domain generalization and uncertainty quantification. Extensive experiments demonstrate that the Meta-GAT model has state-of-the-art domain generalization performance and robustly estimates uncertainty under few examples constraints. By publishing AI-ready data, evaluation frameworks, and baseline results, we hope to see the Meta-MolNet suite become a comprehensive resource for the AI-assisted drug discovery community. Meta-MolNet is freely accessible at https://github.com/lol88/Meta-MolNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenchenchen发布了新的文献求助10
刚刚
学术疯子发布了新的文献求助10
1秒前
1秒前
魔幻的妖丽完成签到 ,获得积分10
1秒前
小巧忆翠完成签到,获得积分10
1秒前
爱飞的乌龟完成签到,获得积分10
2秒前
鲜艳的火龙果完成签到,获得积分10
2秒前
科研通AI2S应助wangfaqing942采纳,获得10
2秒前
wanci应助畅快山兰采纳,获得10
2秒前
2秒前
雪白的稀完成签到,获得积分20
2秒前
科目三应助草壁米采纳,获得10
3秒前
3秒前
4秒前
4秒前
Gojestim发布了新的文献求助10
4秒前
lin发布了新的文献求助10
5秒前
CaoRouLi完成签到,获得积分10
5秒前
6秒前
6秒前
艺阳发布了新的文献求助10
7秒前
7秒前
SDNUDRUG发布了新的文献求助10
7秒前
7秒前
Hello应助执着静竹采纳,获得10
8秒前
8秒前
Spinnin完成签到,获得积分10
9秒前
tomorrow505应助wxj采纳,获得10
9秒前
於成协完成签到,获得积分10
9秒前
chenchenchen发布了新的文献求助10
10秒前
科研通AI2S应助Linyi采纳,获得10
11秒前
11秒前
Luna完成签到 ,获得积分10
11秒前
欣慰的盼芙完成签到 ,获得积分10
11秒前
DY完成签到,获得积分20
11秒前
11秒前
12秒前
13秒前
14秒前
14秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328014
求助须知:如何正确求助?哪些是违规求助? 2958132
关于积分的说明 8589374
捐赠科研通 2636415
什么是DOI,文献DOI怎么找? 1442975
科研通“疑难数据库(出版商)”最低求助积分说明 668469
邀请新用户注册赠送积分活动 655688