药物发现
水准点(测量)
领域(数学分析)
计算机科学
计算生物学
数据挖掘
数据科学
数学
生物信息学
生物
地理
地图学
数学分析
作者
Qiujie Lv,Guanxing Chen,Ziduo Yang,Weihe Zhong,Calvin Yu‐Chian Chen
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-15
被引量:6
标识
DOI:10.1109/tnnls.2024.3359657
摘要
Predicting the pharmacological activity, toxicity, and pharmacokinetic properties of molecules is a central task in drug discovery. Existing machine learning methods are transferred from one resource rich molecular property to another data scarce property in the same scaffold dataset. However, existing models may produce fragile and highly uncertain predictions for new scaffold molecules. And these models were tested on different benchmarks, which seriously affected the quality of their evaluation results. In this article, we introduce Meta-MolNet, a collection of data benchmark and algorithms, which is a standard benchmark platform for measuring model generalization and uncertainty quantification capabilities. Meta-MolNet manages a wide range of molecular datasets with high ratio of molecules/scaffolds, which often leads to more difficult data shift and generalization problems. Furthermore, we propose a graph attention network based on cross-domain meta-learning, Meta-GAT, which uses bilevel optimization to learn meta-knowledge from the scaffold family molecular dataset in the source domain. Meta-GAT benefits from meta-knowledge that reduces the requirement of sample complexity to enable reliable predictions of new scaffold molecules in the target domain through internal iteration of a few examples. We evaluate existing methods as baselines for the community, and the Meta-MolNet benchmark demonstrates the effectiveness of measuring the proposed algorithm in domain generalization and uncertainty quantification. Extensive experiments demonstrate that the Meta-GAT model has state-of-the-art domain generalization performance and robustly estimates uncertainty under few examples constraints. By publishing AI-ready data, evaluation frameworks, and baseline results, we hope to see the Meta-MolNet suite become a comprehensive resource for the AI-assisted drug discovery community. Meta-MolNet is freely accessible at https://github.com/lol88/Meta-MolNet.
科研通智能强力驱动
Strongly Powered by AbleSci AI