RM-GPT: Enhance the comprehensive generative ability of molecular GPT model via LocalRNN and RealFormer

计算机科学 生成模型 生成语法 人工智能
作者
Wenfeng Fan,Yue He,Fei Zhu
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:150: 102827-102827
标识
DOI:10.1016/j.artmed.2024.102827
摘要

Due to the surging of cost, artificial intelligence-assisted de novo drug design has supplanted conventional methods and become an emerging option for drug discovery. Although there have arisen many successful examples of applying generative models to the molecular field, these methods struggle to deal with conditional generation that meet chemists' practical requirements which ask for a controllable process to generate new molecules or optimize basic molecules with appointed conditions. To address this problem, a Recurrent Molecular-Generative Pretrained Transformer model is proposed, supplemented by LocalRNN and Residual Attention Layer Transformer, referred to as RM-GPT. RM-GPT rebuilds GPT model's architecture by incorporating LocalRNN and Residual Attention Layer Transformer so that it is able to extract local information and build connectivity between attention blocks. The incorporation of Transformer in these two modules enables leveraging the parallel computing advantages of multi-head attention mechanisms while extracting local structural information effectively. Through exploring and learning in a large chemical space, RM-GPT absorbs the ability to generate drug-like molecules with conditions in demand, such as desired properties and scaffolds, precisely and stably. RM-GPT achieved better results than SOTA methods on conditional generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zj发布了新的文献求助10
刚刚
buzhinianjiu完成签到,获得积分10
2秒前
4秒前
7秒前
zzzzz完成签到 ,获得积分10
7秒前
8秒前
张雯雯完成签到,获得积分10
10秒前
AI发布了新的文献求助10
12秒前
12秒前
清嘉完成签到,获得积分10
13秒前
16秒前
17秒前
研友_VZG7GZ应助霸气的思柔采纳,获得10
18秒前
18秒前
静静发布了新的文献求助10
21秒前
不换金正七散完成签到,获得积分10
22秒前
Nyxia发布了新的文献求助10
22秒前
22秒前
李健的小迷弟应助瑶625采纳,获得10
24秒前
沉静的红酒完成签到,获得积分10
25秒前
25秒前
脸小呆呆发布了新的文献求助10
25秒前
呆瓜子完成签到,获得积分10
26秒前
爆米花应助王染墨采纳,获得10
27秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
28秒前
29秒前
调皮万怨完成签到,获得积分10
29秒前
无花果应助Nyxia采纳,获得10
29秒前
30秒前
31秒前
31秒前
66289发布了新的文献求助10
32秒前
32秒前
瑶625发布了新的文献求助10
36秒前
36秒前
hh发布了新的文献求助10
36秒前
花椒泡茶发布了新的文献求助10
36秒前
U9A完成签到,获得积分20
37秒前
39秒前
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999708
求助须知:如何正确求助?哪些是违规求助? 3539157
关于积分的说明 11276003
捐赠科研通 3277850
什么是DOI,文献DOI怎么找? 1807761
邀请新用户注册赠送积分活动 884191
科研通“疑难数据库(出版商)”最低求助积分说明 810142