RM-GPT: Enhance the comprehensive generative ability of molecular GPT model via LocalRNN and RealFormer

计算机科学 生成模型 生成语法 人工智能
作者
Wenfeng Fan,Yue He,Fei Zhu
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:150: 102827-102827 被引量:4
标识
DOI:10.1016/j.artmed.2024.102827
摘要

Due to the surging of cost, artificial intelligence-assisted de novo drug design has supplanted conventional methods and become an emerging option for drug discovery. Although there have arisen many successful examples of applying generative models to the molecular field, these methods struggle to deal with conditional generation that meet chemists' practical requirements which ask for a controllable process to generate new molecules or optimize basic molecules with appointed conditions. To address this problem, a Recurrent Molecular-Generative Pretrained Transformer model is proposed, supplemented by LocalRNN and Residual Attention Layer Transformer, referred to as RM-GPT. RM-GPT rebuilds GPT model's architecture by incorporating LocalRNN and Residual Attention Layer Transformer so that it is able to extract local information and build connectivity between attention blocks. The incorporation of Transformer in these two modules enables leveraging the parallel computing advantages of multi-head attention mechanisms while extracting local structural information effectively. Through exploring and learning in a large chemical space, RM-GPT absorbs the ability to generate drug-like molecules with conditions in demand, such as desired properties and scaffolds, precisely and stably. RM-GPT achieved better results than SOTA methods on conditional generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传统的孤丝完成签到 ,获得积分10
刚刚
2秒前
2秒前
2秒前
高兴的凝蝶完成签到,获得积分10
2秒前
3秒前
思源应助朴实的绿兰采纳,获得10
3秒前
大意的觅云完成签到,获得积分10
3秒前
huohuo143完成签到,获得积分10
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
求助应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
cc应助科研通管家采纳,获得20
4秒前
4秒前
町果果完成签到,获得积分10
4秒前
求助应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
4秒前
大个应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
打打应助科研通管家采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
风中的问旋应助liujian采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得30
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735472
求助须知:如何正确求助?哪些是违规求助? 5360845
关于积分的说明 15330104
捐赠科研通 4879619
什么是DOI,文献DOI怎么找? 2622182
邀请新用户注册赠送积分活动 1571280
关于科研通互助平台的介绍 1528116