Transferring Meta-Policy From Simulation to Reality via Progressive Neural Network

人工神经网络 计算机科学 人工智能
作者
Meng Wei,Hao Ju,Tongxu Ai,Randy Gómez,Eric Nichols,Guangliang Li
出处
期刊:IEEE robotics and automation letters 卷期号:9 (4): 3696-3703
标识
DOI:10.1109/lra.2024.3370034
摘要

Deep reinforcement learning has achieved great success in many challenging domains. However, sample efficiency and safety issues still prevent from applying deep reinforcement learning directly in robotics. Sim-to-real transfer learning is one feasible solution to tackle these problems and address the reality gap between simulation and reality. In this letter, we propose to combine meta-reinforcement learning and progressive neural network (PNN) by meta-training a policy for multiple source tasks and transferring it to the real-world robot via PNN (MetaPNN). We expect that training meta-policy over meta-tasks without considering dynamics discrepancy with our method can bridge the gap between simulation and reality with mismatched dynamics, and allow the agent to learn one single policy solving multiple tasks instead of using one policy network in PNN to solve one task. Meanwhile, the transferred meta-policy via PNN is expected to solve the target task and adapt to new situations at the same time. Our results in a variety of target tasks in AntPos and Reach with simulated manipulator show that MetaPNN can significantly improve the robot's learning efficiency and performance. Our further results in real-world Reach tasks with physical robot arm and a new task that is different from the meta-tasks show there might be a synergy between meta-learning and PNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助科研通管家采纳,获得10
刚刚
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
17263365721完成签到 ,获得积分10
刚刚
冬天的回忆完成签到 ,获得积分10
刚刚
风清扬应助科研通管家采纳,获得30
1秒前
李健应助科研通管家采纳,获得10
1秒前
dangdang应助科研通管家采纳,获得40
1秒前
1秒前
Frank应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
2秒前
Frank应助科研通管家采纳,获得10
2秒前
2秒前
烟花应助科研通管家采纳,获得10
2秒前
泽松应助科研通管家采纳,获得10
2秒前
2秒前
大个应助科研通管家采纳,获得50
2秒前
量子星尘发布了新的文献求助10
2秒前
小二郎应助Narcissus采纳,获得10
2秒前
寒冷的小熊猫完成签到,获得积分10
3秒前
4秒前
华仔应助苗苗会喵喵采纳,获得10
5秒前
7秒前
wayne完成签到,获得积分10
9秒前
zcydbttj2011完成签到 ,获得积分10
13秒前
limo完成签到 ,获得积分10
13秒前
ying完成签到,获得积分10
15秒前
析木完成签到,获得积分10
15秒前
16秒前
olivia完成签到,获得积分10
17秒前
无止完成签到,获得积分10
18秒前
千里毅完成签到,获得积分10
18秒前
科研通AI6应助keyan采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
dddd发布了新的文献求助10
20秒前
20秒前
21秒前
云止发布了新的文献求助10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060