亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transferring Meta-Policy From Simulation to Reality via Progressive Neural Network

人工神经网络 计算机科学 人工智能
作者
Meng Wei,Hao Ju,Tongxu Ai,Randy Gómez,Eric Nichols,Guangliang Li
出处
期刊:IEEE robotics and automation letters 卷期号:9 (4): 3696-3703
标识
DOI:10.1109/lra.2024.3370034
摘要

Deep reinforcement learning has achieved great success in many challenging domains. However, sample efficiency and safety issues still prevent from applying deep reinforcement learning directly in robotics. Sim-to-real transfer learning is one feasible solution to tackle these problems and address the reality gap between simulation and reality. In this letter, we propose to combine meta-reinforcement learning and progressive neural network (PNN) by meta-training a policy for multiple source tasks and transferring it to the real-world robot via PNN (MetaPNN). We expect that training meta-policy over meta-tasks without considering dynamics discrepancy with our method can bridge the gap between simulation and reality with mismatched dynamics, and allow the agent to learn one single policy solving multiple tasks instead of using one policy network in PNN to solve one task. Meanwhile, the transferred meta-policy via PNN is expected to solve the target task and adapt to new situations at the same time. Our results in a variety of target tasks in AntPos and Reach with simulated manipulator show that MetaPNN can significantly improve the robot's learning efficiency and performance. Our further results in real-world Reach tasks with physical robot arm and a new task that is different from the meta-tasks show there might be a synergy between meta-learning and PNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
坦率的金针菇完成签到 ,获得积分10
2秒前
2秒前
真德丕发布了新的文献求助10
3秒前
Liang发布了新的文献求助10
6秒前
9秒前
真德丕完成签到,获得积分10
12秒前
ceeray23应助科研通管家采纳,获得10
15秒前
ceeray23应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
mashibeo应助科研通管家采纳,获得10
15秒前
15秒前
付珊珊完成签到,获得积分20
17秒前
香蕉觅云应助付珊珊采纳,获得10
25秒前
28秒前
28秒前
28秒前
4114发布了新的文献求助10
40秒前
敏敏9813完成签到,获得积分10
48秒前
4114完成签到,获得积分10
51秒前
Ykaor完成签到 ,获得积分10
52秒前
俊逸沂完成签到,获得积分20
58秒前
汉堡包应助ljj001ljj采纳,获得10
1分钟前
852应助契合采纳,获得20
1分钟前
211JZH完成签到 ,获得积分10
1分钟前
科研通AI6应助王大壮采纳,获得10
1分钟前
1分钟前
1分钟前
ljj001ljj发布了新的文献求助10
1分钟前
Nomb1发布了新的文献求助10
1分钟前
1分钟前
今后应助zzz_采纳,获得10
1分钟前
共享精神应助Nomb1采纳,获得10
1分钟前
1分钟前
OvO_4577发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助Royal耗子采纳,获得10
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502750
求助须知:如何正确求助?哪些是违规求助? 4598475
关于积分的说明 14464193
捐赠科研通 4532042
什么是DOI,文献DOI怎么找? 2483808
邀请新用户注册赠送积分活动 1467025
关于科研通互助平台的介绍 1439644