Transferring Meta-Policy From Simulation to Reality via Progressive Neural Network

人工神经网络 计算机科学 人工智能
作者
Meng Wei,Hao Ju,Tongxu Ai,Randy Gómez,Eric Nichols,Guangliang Li
出处
期刊:IEEE robotics and automation letters 卷期号:9 (4): 3696-3703
标识
DOI:10.1109/lra.2024.3370034
摘要

Deep reinforcement learning has achieved great success in many challenging domains. However, sample efficiency and safety issues still prevent from applying deep reinforcement learning directly in robotics. Sim-to-real transfer learning is one feasible solution to tackle these problems and address the reality gap between simulation and reality. In this letter, we propose to combine meta-reinforcement learning and progressive neural network (PNN) by meta-training a policy for multiple source tasks and transferring it to the real-world robot via PNN (MetaPNN). We expect that training meta-policy over meta-tasks without considering dynamics discrepancy with our method can bridge the gap between simulation and reality with mismatched dynamics, and allow the agent to learn one single policy solving multiple tasks instead of using one policy network in PNN to solve one task. Meanwhile, the transferred meta-policy via PNN is expected to solve the target task and adapt to new situations at the same time. Our results in a variety of target tasks in AntPos and Reach with simulated manipulator show that MetaPNN can significantly improve the robot's learning efficiency and performance. Our further results in real-world Reach tasks with physical robot arm and a new task that is different from the meta-tasks show there might be a synergy between meta-learning and PNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meijie完成签到,获得积分10
1秒前
keyakey完成签到,获得积分10
1秒前
哇哇咔咔应助ao采纳,获得10
1秒前
彭于晏应助呆呆瓜采纳,获得10
1秒前
kmzzy完成签到 ,获得积分10
2秒前
3秒前
3秒前
SciGPT应助秦长老采纳,获得10
3秒前
香蕉觅云应助书祝采纳,获得200
3秒前
危机的机器猫完成签到 ,获得积分10
4秒前
邢问芙发布了新的文献求助10
5秒前
5秒前
ShikiNatsume完成签到,获得积分10
5秒前
yulong完成签到,获得积分10
5秒前
段鑫盛发布了新的文献求助20
5秒前
时镜完成签到,获得积分10
6秒前
6秒前
浮游应助浮浮世世采纳,获得10
7秒前
Kiefer发布了新的文献求助10
7秒前
JIA完成签到,获得积分10
8秒前
希望天下0贩的0应助www采纳,获得10
8秒前
wzy发布了新的文献求助10
9秒前
陶醉的笑珊完成签到,获得积分20
9秒前
研友_VZG7GZ应助星星采纳,获得10
9秒前
熊熊完成签到,获得积分20
9秒前
10秒前
Bellona发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
Aries完成签到,获得积分10
12秒前
传奇3应助研友_nxwBJL采纳,获得20
13秒前
陈阳完成签到,获得积分10
13秒前
呆呆瓜完成签到,获得积分10
13秒前
meijie发布了新的文献求助10
13秒前
共享精神应助chenzi采纳,获得10
14秒前
15秒前
15秒前
16秒前
RUSH发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462518
求助须知:如何正确求助?哪些是违规求助? 4567225
关于积分的说明 14309649
捐赠科研通 4493103
什么是DOI,文献DOI怎么找? 2461427
邀请新用户注册赠送积分活动 1450522
关于科研通互助平台的介绍 1425854