UAV image target localization method based on outlier filter and frame buffer

帧(网络) 缓冲器(光纤) 人工智能 计算机科学 计算机视觉 离群值 滤波器(信号处理) 图像(数学) 模式识别(心理学) 电信
作者
Yang Wang,Hongguang Li,Xinjun Li,Zhipeng Wang,Baochang ZHANG
出处
期刊:Chinese Journal of Aeronautics [Elsevier BV]
标识
DOI:10.1016/j.cja.2024.02.014
摘要

With rapid development of UAV technology, research on UAV image analysis has gained attention. As the existing techniques of UAV target localization often rely on additional equipment, a method of UAV target localization based on depth estimation has been proposed. However, the unique perspective of UAVs poses challenges such as the significant field of view variations and the presence of dynamic objects in the scene. As a result, the existing methods of depth estimation and scale recovery cannot be directly applied to UAV perspectives. Additionally, there is a scarcity of depth estimation datasets tailored for UAV perspectives, which makes supervised algorithms impractical. To address these issues, an outlier filter is introduced to enhance the applicability of depth estimation networks to target localization. A frame buffer method is proposed to achieve more accurate scale recovery, so as to handle complex scene textures in UAV images. The proposed method demonstrates a 14.29% improvement over the baseline. Compared with the average recovery results from UAV perspectives, the difference is only 0.88%, approaching the performance of scale recovery using ground truth labels. Furthermore, to overcome the limited availability of traditional UAV depth datasets, a method for generating depth labels from video sequences is proposed. Compared to state-of-the-art methods, the proposed approach achieves higher accuracy in depth estimation and stands for the first attempt at target localization using image sequences. Proposed algorithm and dataset are available at https://github.com/uav-tan/uav-object-localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个薯片发布了新的文献求助10
1秒前
wanci应助着急的大米采纳,获得10
1秒前
阿婆家的傻小子完成签到,获得积分10
2秒前
2秒前
orixero应助zzzzza采纳,获得10
3秒前
DT完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
笨笨的莫英完成签到,获得积分20
5秒前
6秒前
乐乐应助鼻揩了转去采纳,获得20
6秒前
姚世娇完成签到 ,获得积分10
6秒前
continue发布了新的文献求助10
7秒前
添酱完成签到,获得积分20
8秒前
WMQkingofk完成签到,获得积分10
8秒前
rye完成签到,获得积分10
8秒前
9秒前
10秒前
小补给卡完成签到,获得积分10
11秒前
11秒前
11秒前
Eve发布了新的文献求助10
11秒前
能干的孤丝完成签到,获得积分10
12秒前
满家归寻完成签到 ,获得积分10
13秒前
可爱的函函应助goodgoodstudy采纳,获得10
13秒前
梦花结完成签到,获得积分10
14秒前
研友_VZG7GZ应助Dream采纳,获得10
14秒前
14秒前
14秒前
Lwj发布了新的文献求助10
15秒前
snowpie完成签到 ,获得积分10
16秒前
moonlight发布了新的文献求助10
16秒前
16秒前
17秒前
小乾完成签到 ,获得积分10
17秒前
卡戎529发布了新的文献求助10
17秒前
wualexandra发布了新的文献求助10
20秒前
CodeCraft应助师志博采纳,获得10
21秒前
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745005
求助须知:如何正确求助?哪些是违规求助? 3287963
关于积分的说明 10056553
捐赠科研通 3004141
什么是DOI,文献DOI怎么找? 1649480
邀请新用户注册赠送积分活动 785342
科研通“疑难数据库(出版商)”最低求助积分说明 751049