UAV image target localization method based on outlier filter and frame buffer

帧(网络) 缓冲器(光纤) 人工智能 计算机科学 计算机视觉 离群值 滤波器(信号处理) 图像(数学) 模式识别(心理学) 电信
作者
Yang Wang,Hongguang Li,Xinjun Li,Zhipeng Wang,Baochang ZHANG
出处
期刊:Chinese Journal of Aeronautics [Elsevier BV]
标识
DOI:10.1016/j.cja.2024.02.014
摘要

With rapid development of UAV technology, research on UAV image analysis has gained attention. As the existing techniques of UAV target localization often rely on additional equipment, a method of UAV target localization based on depth estimation has been proposed. However, the unique perspective of UAVs poses challenges such as the significant field of view variations and the presence of dynamic objects in the scene. As a result, the existing methods of depth estimation and scale recovery cannot be directly applied to UAV perspectives. Additionally, there is a scarcity of depth estimation datasets tailored for UAV perspectives, which makes supervised algorithms impractical. To address these issues, an outlier filter is introduced to enhance the applicability of depth estimation networks to target localization. A frame buffer method is proposed to achieve more accurate scale recovery, so as to handle complex scene textures in UAV images. The proposed method demonstrates a 14.29% improvement over the baseline. Compared with the average recovery results from UAV perspectives, the difference is only 0.88%, approaching the performance of scale recovery using ground truth labels. Furthermore, to overcome the limited availability of traditional UAV depth datasets, a method for generating depth labels from video sequences is proposed. Compared to state-of-the-art methods, the proposed approach achieves higher accuracy in depth estimation and stands for the first attempt at target localization using image sequences. Proposed algorithm and dataset are available at https://github.com/uav-tan/uav-object-localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caibao发布了新的文献求助10
刚刚
xiong_mandy发布了新的文献求助10
1秒前
lzl17o8发布了新的文献求助10
2秒前
葳蕤发布了新的文献求助10
2秒前
所所应助kexi7采纳,获得10
3秒前
菠萝炒饭应助萱棚采纳,获得10
3秒前
桐桐应助妮妮采纳,获得10
3秒前
简单雨柏完成签到,获得积分10
3秒前
努力努力发布了新的文献求助10
4秒前
5秒前
shouying完成签到,获得积分10
7秒前
贰鸟应助zfs采纳,获得10
9秒前
小绾关注了科研通微信公众号
9秒前
LONG发布了新的文献求助10
10秒前
传奇3应助BZPL采纳,获得10
11秒前
11秒前
搜集达人应助ttnnn采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
爆米花应助book思议采纳,获得30
15秒前
15秒前
Randall发布了新的文献求助10
16秒前
鹿诗筠完成签到,获得积分10
16秒前
18秒前
19秒前
无花果应助LONG采纳,获得10
19秒前
ZHAO完成签到,获得积分10
20秒前
和谐的孱完成签到,获得积分10
20秒前
小付发布了新的文献求助10
20秒前
简单雨柏发布了新的文献求助10
21秒前
一一发布了新的文献求助10
22秒前
Lucas应助笑点低的丹烟采纳,获得10
23秒前
焱焱发布了新的文献求助10
23秒前
上官若男应助vicar采纳,获得10
24秒前
djiwisksk66应助xiong_mandy采纳,获得10
25秒前
chancco发布了新的文献求助10
25秒前
25秒前
xingxing发布了新的文献求助10
26秒前
yyds应助鸭鸭酱采纳,获得100
27秒前
27秒前
研友_VZG7GZ应助儒雅的巧曼采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952180
求助须知:如何正确求助?哪些是违规求助? 3497683
关于积分的说明 11088472
捐赠科研通 3228269
什么是DOI,文献DOI怎么找? 1784720
邀请新用户注册赠送积分活动 868875
科研通“疑难数据库(出版商)”最低求助积分说明 801281