UAV image target localization method based on outlier filter and frame buffer

帧(网络) 缓冲器(光纤) 人工智能 计算机科学 计算机视觉 离群值 滤波器(信号处理) 图像(数学) 模式识别(心理学) 电信
作者
Yang Wang,Hongguang Li,Xinjun Li,Zhipeng Wang,Baochang ZHANG
出处
期刊:Chinese Journal of Aeronautics [Elsevier]
标识
DOI:10.1016/j.cja.2024.02.014
摘要

With rapid development of UAV technology, research on UAV image analysis has gained attention. As the existing techniques of UAV target localization often rely on additional equipment, a method of UAV target localization based on depth estimation has been proposed. However, the unique perspective of UAVs poses challenges such as the significant field of view variations and the presence of dynamic objects in the scene. As a result, the existing methods of depth estimation and scale recovery cannot be directly applied to UAV perspectives. Additionally, there is a scarcity of depth estimation datasets tailored for UAV perspectives, which makes supervised algorithms impractical. To address these issues, an outlier filter is introduced to enhance the applicability of depth estimation networks to target localization. A frame buffer method is proposed to achieve more accurate scale recovery, so as to handle complex scene textures in UAV images. The proposed method demonstrates a 14.29% improvement over the baseline. Compared with the average recovery results from UAV perspectives, the difference is only 0.88%, approaching the performance of scale recovery using ground truth labels. Furthermore, to overcome the limited availability of traditional UAV depth datasets, a method for generating depth labels from video sequences is proposed. Compared to state-of-the-art methods, the proposed approach achieves higher accuracy in depth estimation and stands for the first attempt at target localization using image sequences. Proposed algorithm and dataset are available at https://github.com/uav-tan/uav-object-localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
DongZhikai应助科研通管家采纳,获得10
1秒前
香蕉奎应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
良辰应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得30
1秒前
菠萝完成签到 ,获得积分10
1秒前
1秒前
2秒前
bamboo发布了新的文献求助10
3秒前
4秒前
captin发布了新的文献求助10
5秒前
共享精神应助栗子采纳,获得10
5秒前
6秒前
文艺书雪发布了新的文献求助10
7秒前
10秒前
10秒前
鲤鱼完成签到,获得积分10
11秒前
11秒前
赘婿应助yeyongchang_hit采纳,获得10
11秒前
李爱国应助邓玲采纳,获得10
12秒前
12秒前
zyc发布了新的文献求助10
15秒前
互助遵法尚德应助heart采纳,获得10
15秒前
paper完成签到,获得积分10
16秒前
YP_024完成签到,获得积分10
18秒前
19秒前
21秒前
Ava应助yeyongchang_hit采纳,获得10
22秒前
paper发布了新的文献求助10
22秒前
peng发布了新的文献求助10
23秒前
8R60d8应助S_ki采纳,获得10
24秒前
bamboo发布了新的文献求助10
26秒前
浅尝离白应助苹果饼干采纳,获得30
26秒前
26秒前
8R60d8应助柠橙采纳,获得10
26秒前
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154458
求助须知:如何正确求助?哪些是违规求助? 2805352
关于积分的说明 7864477
捐赠科研通 2463541
什么是DOI,文献DOI怎么找? 1311399
科研通“疑难数据库(出版商)”最低求助积分说明 629574
版权声明 601821