Learning Consistency and Specificity of Cells From Single-Cell Multi-Omic Data

计算机科学 一致性(知识库) 计算生物学 情报检索 数据科学 人工智能 生物
作者
Haiyue Wang,Zaiyi Liu,Xiaoke Ma
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 3134-3145 被引量:8
标识
DOI:10.1109/jbhi.2024.3370868
摘要

Advancements in single-cell technologies concomitantly develop the epigenomic and transcriptomic profiles at the cell levels, providing opportunities to explore the potential biological mechanisms. Even though significant efforts have been dedicated to them, it remains challenging for the integration analysis of multi-omic data of single-cell because of the heterogeneity, complicated coupling and interpretability of data. To handle these issues, we propose a novel self-representation Learning-based Multi-omics data Integrative Clustering algorithm (sLMIC) for the integration of single-cell epigenomic profiles (DNA methylation or scATAC-seq) and transcriptomic (scRNA-seq), which the consistent and specific features of cells are explicitly extracted facilitating the cell clustering. Specifically, sLMIC constructs a graph for each type of single-cell data, thereby transforming omics data into multi-layer networks, which effectively removes heterogeneity of omic data. Then, sLMIC employs the low-rank and exclusivity constraints to separate the self-representation of cells into two parts, i.e., the shared and specific features, which explicitly characterize the consistency and diversity of omic data, providing an effective strategy to model the structure of cell types. Feature extraction and cell clustering are jointly formulated as an overall objective function, where latent features of data are obtained under the guidance of cell clustering. The extensive experimental results on 13 multi-omics datasets of single-cell from diverse organisms and tissues indicate that sLMIC observably exceeds the advanced algorithms regarding various measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
包容的水彤关注了科研通微信公众号
1秒前
1秒前
1秒前
受伤秋烟完成签到,获得积分10
2秒前
自然的芷蝶应助JiaYY采纳,获得20
2秒前
2秒前
lizhen完成签到,获得积分10
2秒前
烂漫的新竹完成签到,获得积分10
2秒前
香蕉觅云应助阔达的扬采纳,获得10
2秒前
dog发布了新的文献求助10
2秒前
犹豫发布了新的文献求助10
2秒前
小杭76发布了新的文献求助10
2秒前
2秒前
柚子发布了新的文献求助10
3秒前
健壮荧完成签到,获得积分10
3秒前
小嘀嗒发布了新的文献求助10
3秒前
一只啾咪完成签到,获得积分10
3秒前
亭语完成签到 ,获得积分0
3秒前
3秒前
科研通AI2S应助牛牛采纳,获得10
4秒前
天行马发布了新的文献求助10
4秒前
宝小静发布了新的文献求助10
4秒前
852应助石问丝采纳,获得10
4秒前
johnzsin发布了新的文献求助10
4秒前
li关闭了li文献求助
5秒前
凉虾完成签到,获得积分10
5秒前
孔雀翎发布了新的文献求助10
5秒前
吴灵发布了新的文献求助10
5秒前
赵珂完成签到,获得积分10
5秒前
所所应助三十三采纳,获得10
6秒前
CodeCraft应助kersville采纳,获得10
7秒前
231完成签到 ,获得积分10
7秒前
彩色鸿涛完成签到,获得积分10
7秒前
7秒前
玥越发布了新的文献求助10
7秒前
7秒前
8秒前
上官若男应助落后立果采纳,获得30
9秒前
风之子发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477776
求助须知:如何正确求助?哪些是违规求助? 4579563
关于积分的说明 14369317
捐赠科研通 4507785
什么是DOI,文献DOI怎么找? 2470190
邀请新用户注册赠送积分活动 1457093
关于科研通互助平台的介绍 1431066