Learning Consistency and Specificity of Cells From Single-Cell Multi-Omic Data

计算机科学 一致性(知识库) 计算生物学 情报检索 数据科学 人工智能 生物
作者
Haiyue Wang,Zaiyi Liu,Xiaoke Ma
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 3134-3145 被引量:3
标识
DOI:10.1109/jbhi.2024.3370868
摘要

Advancements in single-cell technologies concomitantly develop the epigenomic and transcriptomic profiles at the cell levels, providing opportunities to explore the potential biological mechanisms. Even though significant efforts have been dedicated to them, it remains challenging for the integration analysis of multi-omic data of single-cell because of the heterogeneity, complicated coupling and interpretability of data. To handle these issues, we propose a novel s elf-representation L earning-based M ulti-omics data I ntegrative C lustering algorithm (sLMIC) for the integration of single-cell epigenomic profiles (DNA methylation or scATAC-seq) and transcriptomic (scRNA-seq), which the consistent and specific features of cells are explicitly extracted facilitating the cell clustering. Specifically, sLMIC constructs a graph for each type of single-cell data, thereby transforming omics data into multi-layer networks, which effectively removes heterogeneity of omic data. Then, sLMIC employs the low-rank and exclusivity constraints to separate the self-representation of cells into two parts, i.e., the shared and specific features, which explicitly characterize the consistency and diversity of omic data, providing an effective strategy to model the structure of cell types. Feature extraction and cell clustering are jointly formulated as an overall objective function, where latent features of data are obtained under the guidance of cell clustering. The extensive experimental results on 13 multi-omics datasets of single-cell from diverse organisms and tissues indicate that sLMIC observably exceeds the advanced algorithms regarding various measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Getlogger发布了新的文献求助10
刚刚
胖虎不胖完成签到 ,获得积分10
刚刚
Stella完成签到,获得积分10
1秒前
nnnnn发布了新的文献求助10
2秒前
你莫停发布了新的文献求助10
2秒前
Hello应助LLLLL采纳,获得10
2秒前
xiaoyeken发布了新的文献求助20
3秒前
3秒前
深情安青应助陈永伟采纳,获得10
4秒前
4秒前
mihhhhh发布了新的文献求助10
4秒前
59完成签到 ,获得积分10
4秒前
4秒前
张英俊发布了新的文献求助10
5秒前
赘婿应助CFC12采纳,获得30
5秒前
机智的胖达完成签到,获得积分10
5秒前
6秒前
mhl11应助阿峰采纳,获得10
6秒前
6秒前
colddie完成签到,获得积分10
6秒前
烟花应助菠萝吹雪采纳,获得10
6秒前
啊啊啊完成签到 ,获得积分10
7秒前
orixero应助缄默采纳,获得10
7秒前
Jasper应助Getlogger采纳,获得10
7秒前
嘟嘟发布了新的文献求助10
7秒前
7秒前
8秒前
尔玉完成签到,获得积分10
8秒前
yxc完成签到,获得积分10
8秒前
xuex1发布了新的文献求助10
8秒前
Cina发布了新的文献求助50
8秒前
ssxw完成签到,获得积分10
8秒前
柚子完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
11秒前
albert完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
《Undergraduate Research & the Academic Librarian: Case Studies and Best Practices, Volume 2》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397