A Fast Generative Adversarial Network Combined With Transformer for Downscaling GRACE Terrestrial Water Storage Data in Southwestern China

缩小尺度 环境科学 蓄水 数字高程模型 蒸散量 水资源 空间生态学 气候变化 计算机科学 遥感 降水 气象学 地质学 生态学 海洋学 物理 入口 生物
作者
Songwei Gu,Yun Zhou,Long Zhao,Mingguo Ma,Xiaojun She,Lifu Zhang,Yao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:4
标识
DOI:10.1109/tgrs.2024.3349548
摘要

The Gravity Recovery and Climate Experiment (GRACE) satellite provides an unprecedented tool for monitoring large-scale terrestrial water storage (TWS) changes. Yet, its coarse resolution restricts its effectiveness in areas with complex hydrogeological environments, such as southwestern China. To address this limitation, we propose a novel method to improve the spatial resolution of GRACE observations. Our approach leverages a deep learning downscaling model that integrates generative adversarial networks (GANs) and transformer attention mechanisms to derive the spatial patterns of TWS variations. The model incorporates the estimated total water storage changes from GRACE and some hydrological variables—including the digital elevation model (DEM), soil moisture, evapotranspiration, temperature, and precipitation—to enhance the resolution and accuracy of GRACE data. By implementing this method, we successfully increased the spatial resolution of GRACE observations from 0.25° to 0.05°. The advanced neural network downscaling model can accurately characterize local water storage variations, with Nash–Sutcliffe efficiency (NSE) values ranging from 0.58 to 0.92. Moreover, this model not only significantly increases the spatial resolution but also maintains the spatial distribution, offering valuable insights for regional water resources management and fostering small-scale hydrological research. The results have profound implications for sustainable water resources management and climate change assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZHANG发布了新的文献求助30
刚刚
粗心的翠丝完成签到,获得积分20
刚刚
1秒前
五十一完成签到 ,获得积分10
3秒前
xie发布了新的文献求助10
3秒前
3秒前
生动访云发布了新的文献求助10
3秒前
4秒前
坚强元枫发布了新的文献求助10
4秒前
4秒前
buildstar发布了新的文献求助20
4秒前
甘草不甜发布了新的文献求助10
4秒前
靜心发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
不安青牛应助白杨采纳,获得10
7秒前
萝卜酸辣粉关注了科研通微信公众号
7秒前
追梦小帅发布了新的文献求助10
8秒前
乐园鸟完成签到,获得积分10
8秒前
苗条丹南发布了新的文献求助10
9秒前
简单海之发布了新的文献求助20
9秒前
666发布了新的文献求助10
9秒前
彭于晏应助一枚咸鱼采纳,获得10
9秒前
Jasper应助研友_ZG4ml8采纳,获得10
10秒前
留胡子的火完成签到,获得积分10
10秒前
朴实白卉完成签到 ,获得积分10
11秒前
11秒前
12秒前
Coarrb发布了新的文献求助10
12秒前
Japrin完成签到,获得积分10
14秒前
小谢完成签到 ,获得积分10
14秒前
天之道发布了新的文献求助10
14秒前
14秒前
17秒前
18秒前
18秒前
小马甲应助alkaidt采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3468683
求助须知:如何正确求助?哪些是违规求助? 3061731
关于积分的说明 9076998
捐赠科研通 2752222
什么是DOI,文献DOI怎么找? 1510337
科研通“疑难数据库(出版商)”最低求助积分说明 697718
邀请新用户注册赠送积分活动 697707