清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Machine Learning Model for the Early Prediction of Cardiovascular Disease in Patients

计算机科学 疾病 人工智能 机器学习 医学 内科学
作者
Abhishek Thakur,Hutashan Vishal Bhagat,Manminder Singh
标识
DOI:10.1109/icacic59454.2023.10435210
摘要

Cardiovascular disease is a major health concern worldwide, with an estimated 17.9 million deaths each year. It encompasses a range of conditions affecting the heart and blood vessels, including coronary heart disease, stroke, and heart failure. These diseases are often associated with a range of modifiable and non-modifiable risk factors, including high blood pressure, high cholesterol, smoking, physical inactivity, obesity, diabetes, and genetic predisposition. Data analysis and machine learning have emerged as powerful tools for predicting and preventing cardiovascular disease. By analysing large and complex datasets of medical records, researchers can identify patterns and risk factors associated with cardiovascular disease. Machine learning models can help identify important features in the data that are predictive of heart disease outcomes, and can be used to develop accurate and reliable predictive models. Moreover, data analysis can help identify disparities and biases in cardiovascular disease outcomes across different populations and regions. This research aims to develop a machine-learning model for predicting cardiovascular disease risk using benchmark datasets. Various imputation techniques, including Mean, Median, Most Frequent, KNNI, and the proposed risk prediction model, are compared in terms of accuracy and efficiency. The CatBoost classification algorithm is used for developing the proposed model, achieving an accuracy of 91% for the Hungarian dataset. This research provides valuable insights into the use of machine learning and data analysis for predicting cardiovascular disease and improving healthcare outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
nuoberry发布了新的文献求助10
5秒前
科研通AI2S应助景安白采纳,获得30
17秒前
田様应助科研通管家采纳,获得10
24秒前
shhoing应助科研通管家采纳,获得10
24秒前
shhoing应助科研通管家采纳,获得10
24秒前
分析完成签到 ,获得积分10
59秒前
净净发布了新的文献求助10
1分钟前
nuoberry完成签到,获得积分20
2分钟前
2分钟前
nuoberry发布了新的文献求助10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
movoandy完成签到 ,获得积分10
2分钟前
深海理疗完成签到,获得积分10
3分钟前
3分钟前
nuoberry发布了新的文献求助10
3分钟前
4分钟前
4分钟前
科研豆包完成签到 ,获得积分10
4分钟前
NexusExplorer应助xun采纳,获得10
4分钟前
gleep1发布了新的文献求助10
4分钟前
5分钟前
gleep1完成签到,获得积分10
5分钟前
xun发布了新的文献求助10
5分钟前
5分钟前
隐形曼青应助xun采纳,获得10
5分钟前
一道光发布了新的文献求助10
5分钟前
wanci应助一道光采纳,获得30
5分钟前
kkkk完成签到 ,获得积分10
5分钟前
5分钟前
xun发布了新的文献求助10
5分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
xun完成签到,获得积分20
6分钟前
黄天完成签到 ,获得积分10
7分钟前
乐乐应助紫津采纳,获得10
7分钟前
酷酷海豚完成签到,获得积分10
8分钟前
紫津完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561563
求助须知:如何正确求助?哪些是违规求助? 4646662
关于积分的说明 14678727
捐赠科研通 4587989
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490549
关于科研通互助平台的介绍 1461566