A Machine Learning Model for the Early Prediction of Cardiovascular Disease in Patients

计算机科学 疾病 人工智能 机器学习 医学 内科学
作者
Abhishek Thakur,Hutashan Vishal Bhagat,Manminder Singh
标识
DOI:10.1109/icacic59454.2023.10435210
摘要

Cardiovascular disease is a major health concern worldwide, with an estimated 17.9 million deaths each year. It encompasses a range of conditions affecting the heart and blood vessels, including coronary heart disease, stroke, and heart failure. These diseases are often associated with a range of modifiable and non-modifiable risk factors, including high blood pressure, high cholesterol, smoking, physical inactivity, obesity, diabetes, and genetic predisposition. Data analysis and machine learning have emerged as powerful tools for predicting and preventing cardiovascular disease. By analysing large and complex datasets of medical records, researchers can identify patterns and risk factors associated with cardiovascular disease. Machine learning models can help identify important features in the data that are predictive of heart disease outcomes, and can be used to develop accurate and reliable predictive models. Moreover, data analysis can help identify disparities and biases in cardiovascular disease outcomes across different populations and regions. This research aims to develop a machine-learning model for predicting cardiovascular disease risk using benchmark datasets. Various imputation techniques, including Mean, Median, Most Frequent, KNNI, and the proposed risk prediction model, are compared in terms of accuracy and efficiency. The CatBoost classification algorithm is used for developing the proposed model, achieving an accuracy of 91% for the Hungarian dataset. This research provides valuable insights into the use of machine learning and data analysis for predicting cardiovascular disease and improving healthcare outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗苗发布了新的文献求助10
刚刚
Hin66发布了新的文献求助30
刚刚
1秒前
英姑应助HuiYmao采纳,获得10
1秒前
细腻梦凡完成签到,获得积分10
2秒前
2秒前
2秒前
坦率耳机应助雪白的友安采纳,获得10
2秒前
3秒前
科研通AI6应助toutou采纳,获得10
3秒前
3秒前
4秒前
4秒前
义气凡霜完成签到,获得积分10
4秒前
5秒前
liliya发布了新的文献求助30
5秒前
隐形曼青应助大E深空采纳,获得30
6秒前
大模型应助苗苗采纳,获得10
6秒前
7秒前
小个白完成签到,获得积分10
7秒前
L756561205发布了新的文献求助10
7秒前
Qinferl发布了新的文献求助10
7秒前
8秒前
hsss完成签到,获得积分10
8秒前
8秒前
网页发布了新的文献求助10
9秒前
科研通AI6应助control采纳,获得10
9秒前
9秒前
9秒前
称心曼安应助欣慰巨人采纳,获得10
9秒前
dudu发布了新的文献求助10
10秒前
anheshu完成签到 ,获得积分10
10秒前
Hin66完成签到,获得积分10
10秒前
赵寒迟发布了新的文献求助10
11秒前
11秒前
11秒前
hatim发布了新的文献求助10
12秒前
Gulu_发布了新的文献求助10
12秒前
田様应助玉米侠采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072388
求助须知:如何正确求助?哪些是违规求助? 4292768
关于积分的说明 13375916
捐赠科研通 4113855
什么是DOI,文献DOI怎么找? 2252710
邀请新用户注册赠送积分活动 1257518
关于科研通互助平台的介绍 1190266