A Machine Learning Model for the Early Prediction of Cardiovascular Disease in Patients

计算机科学 疾病 人工智能 机器学习 医学 内科学
作者
Abhishek Thakur,Hutashan Vishal Bhagat,Manminder Singh
标识
DOI:10.1109/icacic59454.2023.10435210
摘要

Cardiovascular disease is a major health concern worldwide, with an estimated 17.9 million deaths each year. It encompasses a range of conditions affecting the heart and blood vessels, including coronary heart disease, stroke, and heart failure. These diseases are often associated with a range of modifiable and non-modifiable risk factors, including high blood pressure, high cholesterol, smoking, physical inactivity, obesity, diabetes, and genetic predisposition. Data analysis and machine learning have emerged as powerful tools for predicting and preventing cardiovascular disease. By analysing large and complex datasets of medical records, researchers can identify patterns and risk factors associated with cardiovascular disease. Machine learning models can help identify important features in the data that are predictive of heart disease outcomes, and can be used to develop accurate and reliable predictive models. Moreover, data analysis can help identify disparities and biases in cardiovascular disease outcomes across different populations and regions. This research aims to develop a machine-learning model for predicting cardiovascular disease risk using benchmark datasets. Various imputation techniques, including Mean, Median, Most Frequent, KNNI, and the proposed risk prediction model, are compared in terms of accuracy and efficiency. The CatBoost classification algorithm is used for developing the proposed model, achieving an accuracy of 91% for the Hungarian dataset. This research provides valuable insights into the use of machine learning and data analysis for predicting cardiovascular disease and improving healthcare outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
坚定的怜菡完成签到,获得积分20
2秒前
田様应助负责的元柏采纳,获得10
3秒前
3秒前
落寞成危完成签到,获得积分20
3秒前
4秒前
学习完成签到,获得积分20
4秒前
hbhbj发布了新的文献求助10
4秒前
Doc邓爱科研完成签到,获得积分10
4秒前
王译自发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
安然发布了新的文献求助10
6秒前
小二郎应助elysia采纳,获得10
6秒前
独特振家发布了新的文献求助10
6秒前
6秒前
6秒前
Criminology34应助修辛采纳,获得10
7秒前
LIBINWANG完成签到,获得积分20
7秒前
喵喵喵发布了新的文献求助10
7秒前
8秒前
星辰给星辰的求助进行了留言
8秒前
冰蓝色的忧伤完成签到,获得积分10
9秒前
科研通AI6应助松哥采纳,获得10
9秒前
9秒前
852应助张宝采纳,获得10
9秒前
高小h发布了新的文献求助10
10秒前
LFH发布了新的文献求助10
10秒前
hbhbj发布了新的文献求助10
12秒前
堆堆完成签到 ,获得积分10
12秒前
tj完成签到,获得积分10
13秒前
三七发布了新的文献求助10
13秒前
桐桐应助小巧孤晴采纳,获得10
14秒前
sunhhhh完成签到 ,获得积分10
15秒前
16秒前
16秒前
科研通AI6应助圆锥香蕉采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406795
求助须知:如何正确求助?哪些是违规求助? 4524516
关于积分的说明 14098938
捐赠科研通 4438379
什么是DOI,文献DOI怎么找? 2436217
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340