A Machine Learning Model for the Early Prediction of Cardiovascular Disease in Patients

计算机科学 疾病 人工智能 机器学习 医学 内科学
作者
Abhishek Thakur,Hutashan Vishal Bhagat,Manminder Singh
标识
DOI:10.1109/icacic59454.2023.10435210
摘要

Cardiovascular disease is a major health concern worldwide, with an estimated 17.9 million deaths each year. It encompasses a range of conditions affecting the heart and blood vessels, including coronary heart disease, stroke, and heart failure. These diseases are often associated with a range of modifiable and non-modifiable risk factors, including high blood pressure, high cholesterol, smoking, physical inactivity, obesity, diabetes, and genetic predisposition. Data analysis and machine learning have emerged as powerful tools for predicting and preventing cardiovascular disease. By analysing large and complex datasets of medical records, researchers can identify patterns and risk factors associated with cardiovascular disease. Machine learning models can help identify important features in the data that are predictive of heart disease outcomes, and can be used to develop accurate and reliable predictive models. Moreover, data analysis can help identify disparities and biases in cardiovascular disease outcomes across different populations and regions. This research aims to develop a machine-learning model for predicting cardiovascular disease risk using benchmark datasets. Various imputation techniques, including Mean, Median, Most Frequent, KNNI, and the proposed risk prediction model, are compared in terms of accuracy and efficiency. The CatBoost classification algorithm is used for developing the proposed model, achieving an accuracy of 91% for the Hungarian dataset. This research provides valuable insights into the use of machine learning and data analysis for predicting cardiovascular disease and improving healthcare outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄丽珍关注了科研通微信公众号
刚刚
慕青应助伶俐的以筠采纳,获得10
刚刚
Anthone发布了新的文献求助10
刚刚
olly完成签到,获得积分10
刚刚
Billy应助成就的雅彤采纳,获得30
刚刚
Infinity发布了新的文献求助30
刚刚
1秒前
是乐乐呀完成签到,获得积分10
1秒前
1秒前
SciGPT应助foceman采纳,获得10
1秒前
窦慕卉完成签到,获得积分10
1秒前
charles发布了新的文献求助10
2秒前
所所应助tds采纳,获得10
3秒前
zhyi发布了新的文献求助10
3秒前
共享精神应助1234采纳,获得10
3秒前
3秒前
姚耀发布了新的文献求助10
3秒前
Whc发布了新的文献求助30
4秒前
斯文败类应助yukuai采纳,获得10
6秒前
CodeCraft应助tomorrow采纳,获得10
7秒前
万能图书馆应助ciooli采纳,获得10
7秒前
搜集达人应助yuebaoji采纳,获得10
7秒前
怡然幻然完成签到,获得积分10
8秒前
姚一发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
Hello应助uglyboy采纳,获得30
9秒前
寒色完成签到,获得积分10
9秒前
10秒前
tt发布了新的文献求助10
10秒前
11秒前
11秒前
tds完成签到,获得积分10
13秒前
13秒前
14秒前
CodeCraft应助zyy采纳,获得10
15秒前
15秒前
16秒前
16秒前
tds发布了新的文献求助10
16秒前
NFCJ完成签到 ,获得积分10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126