A Machine Learning Model for the Early Prediction of Cardiovascular Disease in Patients

计算机科学 疾病 人工智能 机器学习 医学 内科学
作者
Abhishek Thakur,Hutashan Vishal Bhagat,Manminder Singh
标识
DOI:10.1109/icacic59454.2023.10435210
摘要

Cardiovascular disease is a major health concern worldwide, with an estimated 17.9 million deaths each year. It encompasses a range of conditions affecting the heart and blood vessels, including coronary heart disease, stroke, and heart failure. These diseases are often associated with a range of modifiable and non-modifiable risk factors, including high blood pressure, high cholesterol, smoking, physical inactivity, obesity, diabetes, and genetic predisposition. Data analysis and machine learning have emerged as powerful tools for predicting and preventing cardiovascular disease. By analysing large and complex datasets of medical records, researchers can identify patterns and risk factors associated with cardiovascular disease. Machine learning models can help identify important features in the data that are predictive of heart disease outcomes, and can be used to develop accurate and reliable predictive models. Moreover, data analysis can help identify disparities and biases in cardiovascular disease outcomes across different populations and regions. This research aims to develop a machine-learning model for predicting cardiovascular disease risk using benchmark datasets. Various imputation techniques, including Mean, Median, Most Frequent, KNNI, and the proposed risk prediction model, are compared in terms of accuracy and efficiency. The CatBoost classification algorithm is used for developing the proposed model, achieving an accuracy of 91% for the Hungarian dataset. This research provides valuable insights into the use of machine learning and data analysis for predicting cardiovascular disease and improving healthcare outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
catnoob发布了新的文献求助10
刚刚
kawayifenm完成签到,获得积分10
1秒前
2秒前
不要讨好十三完成签到,获得积分10
2秒前
3秒前
GC发布了新的文献求助10
5秒前
5秒前
不要芫荽完成签到,获得积分10
6秒前
超级元以发布了新的文献求助10
7秒前
充电宝应助Fine采纳,获得10
7秒前
时光发布了新的文献求助30
8秒前
8秒前
8秒前
千风完成签到,获得积分10
9秒前
内向雅香完成签到,获得积分20
9秒前
9秒前
11秒前
12秒前
不要芫荽发布了新的文献求助30
12秒前
12秒前
13秒前
13秒前
内向雅香发布了新的文献求助30
14秒前
细心无声完成签到 ,获得积分10
14秒前
dd发布了新的文献求助10
15秒前
甜桃完成签到,获得积分10
15秒前
汪CCCCC完成签到,获得积分10
16秒前
无敌最俊朗完成签到,获得积分10
16秒前
Dolly发布了新的文献求助10
16秒前
Wt发布了新的文献求助10
17秒前
18秒前
18秒前
xkyi完成签到,获得积分10
19秒前
汪CCCCC发布了新的文献求助10
19秒前
上官若男应助杨纪春采纳,获得10
19秒前
20秒前
ari完成签到 ,获得积分10
21秒前
岁岁菌完成签到,获得积分10
22秒前
科目三应助Wt采纳,获得10
23秒前
23秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264886
求助须知:如何正确求助?哪些是违规求助? 2904855
关于积分的说明 8331749
捐赠科研通 2575234
什么是DOI,文献DOI怎么找? 1399714
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633353