A Machine Learning Model for the Early Prediction of Cardiovascular Disease in Patients

计算机科学 疾病 人工智能 机器学习 医学 内科学
作者
Abhishek Thakur,Hutashan Vishal Bhagat,Manminder Singh
标识
DOI:10.1109/icacic59454.2023.10435210
摘要

Cardiovascular disease is a major health concern worldwide, with an estimated 17.9 million deaths each year. It encompasses a range of conditions affecting the heart and blood vessels, including coronary heart disease, stroke, and heart failure. These diseases are often associated with a range of modifiable and non-modifiable risk factors, including high blood pressure, high cholesterol, smoking, physical inactivity, obesity, diabetes, and genetic predisposition. Data analysis and machine learning have emerged as powerful tools for predicting and preventing cardiovascular disease. By analysing large and complex datasets of medical records, researchers can identify patterns and risk factors associated with cardiovascular disease. Machine learning models can help identify important features in the data that are predictive of heart disease outcomes, and can be used to develop accurate and reliable predictive models. Moreover, data analysis can help identify disparities and biases in cardiovascular disease outcomes across different populations and regions. This research aims to develop a machine-learning model for predicting cardiovascular disease risk using benchmark datasets. Various imputation techniques, including Mean, Median, Most Frequent, KNNI, and the proposed risk prediction model, are compared in terms of accuracy and efficiency. The CatBoost classification algorithm is used for developing the proposed model, achieving an accuracy of 91% for the Hungarian dataset. This research provides valuable insights into the use of machine learning and data analysis for predicting cardiovascular disease and improving healthcare outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
祖乐萱发布了新的文献求助10
3秒前
陈信宏完成签到,获得积分10
4秒前
4秒前
逍遥子完成签到,获得积分10
4秒前
5秒前
ff发布了新的文献求助10
6秒前
浮游应助djbj2022采纳,获得10
6秒前
科研通AI6应助双夏采纳,获得30
8秒前
冬日空虚完成签到,获得积分10
8秒前
9秒前
11秒前
12秒前
大个应助小黄采纳,获得10
12秒前
13秒前
13秒前
jack发布了新的文献求助10
14秒前
爱笑的天空完成签到,获得积分10
14秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
simdows完成签到,获得积分10
18秒前
科研通AI6应助季文婷采纳,获得10
18秒前
脑洞疼应助jack采纳,获得10
22秒前
123应助儒雅致远采纳,获得10
22秒前
慕青应助儒雅致远采纳,获得10
22秒前
善学以致用应助万事都灵采纳,获得10
23秒前
Wonder罗完成签到,获得积分20
24秒前
小蘑菇应助坦率幻灵采纳,获得10
28秒前
28秒前
29秒前
30秒前
32秒前
msf0073应助JJJ采纳,获得10
34秒前
躺躺躺发布了新的文献求助10
35秒前
37秒前
38秒前
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741