TPE-ADE: Thumbnail-Preserving Encryption Based on Adaptive Deviation Embedding for JPEG Images

计算机科学 加密 JPEG格式 可用性 哈夫曼编码 缩略图 人工智能 计算机视觉 计算机安全 图像(数学) 数据压缩 人机交互
作者
Xiuli Chai,Yakun Ma,Yinjing Wang,Zhihua Gan,Yushu Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 6102-6116 被引量:12
标识
DOI:10.1109/tmm.2023.3345158
摘要

The growing practice of outsourcing captured photos to the cloud has provided users with convenience while also raising privacy concerns. Traditional image encryption techniques prioritize privacy protection but often compromise usability, which is unacceptable for cloud users. To strike a balance between image privacy and usability, scholars have proposed thumbnail-preserving encryption (TPE), whose cipher image preserves the same thumbnail as the plain image while erasing details beyond the thumbnail, providing visual usability while protecting privacy. Regrettably, most of the proposed TPE schemes are not well-suited for widely used JPEG images, and existing TPE schemes supporting JPEG suffer from drawbacks such as poor visual usability, high expansion rate, and the inability to decrypt without loss. Besides, the retrieval designed for TPE-encrypted images exhibits limited generalization. To address these challenges, we pertinently introduce a TPE based on adaptive deviation embedding (TPE-ADE) for JPEG images, incorporating Huffman coding and reversible data hiding techniques. By leveraging JPEG in-compression encryption, we achieve perfectly reversible TPE that enhances visual usability and reduces expansion rates of TPE-encrypted images. Additionally, we encourage the TPE-encrypted images to resemble low-resolution images (LRIs). Then, the convolutional neural network (CNN) is employed to recognize and retrieve LRIs to verify the functionality of TPE-encrypted images. Also, a teacher-assistant-student (TAS) learning paradigm is proposed to optimize the CNN model, enhancing the performances of recognition and retrieval. Experimental results validate the superiority of our encryption algorithm and the effectiveness of TAS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wangqingxia完成签到,获得积分10
1秒前
汉堡包应助不吃豆皮采纳,获得10
1秒前
锋锋发布了新的文献求助10
1秒前
2秒前
3秒前
搜集达人应助亮仔采纳,获得10
4秒前
在水一方应助zwx采纳,获得10
4秒前
HT完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
所所应助xwt采纳,获得10
7秒前
Judy发布了新的文献求助10
7秒前
熊有鹏发布了新的文献求助10
7秒前
7秒前
8秒前
Alpes发布了新的文献求助30
8秒前
llwxx完成签到,获得积分10
9秒前
9秒前
RJ发布了新的文献求助10
9秒前
11秒前
11秒前
鲸鱼打滚发布了新的文献求助10
11秒前
科研通AI2S应助cui18采纳,获得10
11秒前
Changfh完成签到 ,获得积分10
11秒前
12秒前
12秒前
汉堡包应助浪费青春传奇采纳,获得10
12秒前
12秒前
薯条发布了新的文献求助10
13秒前
13秒前
deer发布了新的文献求助10
13秒前
Bertha完成签到,获得积分10
13秒前
Novoa发布了新的文献求助10
13秒前
13秒前
万能图书馆应助ZXC采纳,获得10
13秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082