TPE-ADE: Thumbnail-Preserving Encryption Based on Adaptive Deviation Embedding for JPEG Images

计算机科学 加密 JPEG格式 可用性 哈夫曼编码 缩略图 人工智能 计算机视觉 计算机安全 图像(数学) 数据压缩 人机交互
作者
Xiuli Chai,Yakun Ma,Yinjing Wang,Zhihua Gan,Yushu Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 6102-6116 被引量:6
标识
DOI:10.1109/tmm.2023.3345158
摘要

The growing practice of outsourcing captured photos to the cloud has provided users with convenience while also raising privacy concerns. Traditional image encryption techniques prioritize privacy protection but often compromise usability, which is unacceptable for cloud users. To strike a balance between image privacy and usability, scholars have proposed thumbnail-preserving encryption (TPE), whose cipher image preserves the same thumbnail as the plain image while erasing details beyond the thumbnail, providing visual usability while protecting privacy. Regrettably, most of the proposed TPE schemes are not well-suited for widely used JPEG images, and existing TPE schemes supporting JPEG suffer from drawbacks such as poor visual usability, high expansion rate, and the inability to decrypt without loss. Besides, the retrieval designed for TPE-encrypted images exhibits limited generalization. To address these challenges, we pertinently introduce a TPE based on adaptive deviation embedding (TPE-ADE) for JPEG images, incorporating Huffman coding and reversible data hiding techniques. By leveraging JPEG in-compression encryption, we achieve perfectly reversible TPE that enhances visual usability and reduces expansion rates of TPE-encrypted images. Additionally, we encourage the TPE-encrypted images to resemble low-resolution images (LRIs). Then, the convolutional neural network (CNN) is employed to recognize and retrieve LRIs to verify the functionality of TPE-encrypted images. Also, a teacher-assistant-student (TAS) learning paradigm is proposed to optimize the CNN model, enhancing the performances of recognition and retrieval. Experimental results validate the superiority of our encryption algorithm and the effectiveness of TAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炽岈发布了新的文献求助10
1秒前
2秒前
科研小白发布了新的文献求助10
3秒前
4秒前
重要的清完成签到,获得积分10
6秒前
6秒前
Yara.H发布了新的文献求助10
7秒前
宇月幸成发布了新的文献求助10
12秒前
14秒前
难过的花生完成签到,获得积分10
15秒前
Y哦莫哦莫完成签到,获得积分10
15秒前
乐观忆灵应助奋斗的幼荷采纳,获得20
16秒前
16秒前
合适靖儿发布了新的文献求助10
17秒前
追寻紫安应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
sissiarno应助科研通管家采纳,获得30
21秒前
慕青应助科研通管家采纳,获得10
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
梦之凌云应助科研通管家采纳,获得30
21秒前
爆米花应助科研通管家采纳,获得10
22秒前
HMONEY应助科研通管家采纳,获得10
22秒前
行僧完成签到,获得积分10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
23秒前
李健应助伤心女大采纳,获得30
23秒前
李健应助一二采纳,获得10
23秒前
今后应助Evelyn小鬼采纳,获得10
24秒前
行僧发布了新的文献求助10
25秒前
27秒前
yzh完成签到 ,获得积分10
27秒前
茶色啊完成签到,获得积分20
28秒前
墨与笙发布了新的文献求助150
29秒前
桐桐应助合适靖儿采纳,获得10
29秒前
鳗鱼邪欢完成签到 ,获得积分10
30秒前
32秒前
豆沙卷发布了新的文献求助10
32秒前
mjn404发布了新的文献求助10
34秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055373
求助须知:如何正确求助?哪些是违规求助? 2712154
关于积分的说明 7429854
捐赠科研通 2356935
什么是DOI,文献DOI怎么找? 1248350
科研通“疑难数据库(出版商)”最低求助积分说明 606700
版权声明 596093