Investigating the network structure and causal relationships among bridge symptoms of comorbid depression and anxiety: A Bayesian network analysis

心理学 焦虑 萧条(经济学) 易怒 临床心理学 背景(考古学) 共病 心情 愤怒 精神科 生物 古生物学 经济 宏观经济学
作者
Yu Wang,Zhongquan Li,Xing Cao
出处
期刊:Journal of Clinical Psychology [Wiley]
卷期号:80 (6): 1271-1285 被引量:8
标识
DOI:10.1002/jclp.23663
摘要

Abstract Background The network analysis method emphasizes the interaction between individual symptoms to identify shared or bridging symptoms between depression and anxiety to understand comorbidity. However, the network analysis and community detection approach have limitations in identifying causal relationships among symptoms. This study aims to address this gap by applying Bayesian network (BN) analysis to investigate potential causal relationships. Method Data were collected from a sample of newly enrolled college students. The network structure of depression and anxiety was estimated using the Patient Health Questionnaire‐9 (PHQ‐9) and the Generalized Anxiety Disorder (GAD‐7) Scale measures, respectively. Shared symptoms between depression and anxiety were identified through network analysis and clique percolation (CP) method. The causal relationships among symptoms were estimated using BN. Results The strongest bridge symptoms, as indicated by bridge strength, include sad mood (PHQ2), motor (PHQ8), suicide (PHQ9), restlessness (GAD5), and irritability (GAD6). These bridge symptoms formed a distinct community using the CP algorithm. Sad mood (PHQ2) played an activating role, influencing other symptoms. Meanwhile, restlessness (GAD5) played a mediating role with reciprocal influences on both anxiety and depression symptoms. Motor (PHQ8), suicide (PHQ9), and irritability (GAD6) assumed recipient positions. Conclusion BN analysis presents a valuable approach for investigating the complex interplay between symptoms in the context of comorbid depression and anxiety. It identifies two activating symptoms (i.e., sadness and worry), which serve to underscore the fundamental differences between these two disorders. Additionally, psychomotor symptoms and suicidal ideations are recognized as recipient roles, being influenced by other symptoms within the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
Zhangldtong12发布了新的文献求助10
2秒前
言树完成签到,获得积分10
2秒前
shea应助高君奇采纳,获得10
3秒前
乐乐应助cheersyu采纳,获得10
3秒前
4秒前
地中海发布了新的文献求助30
4秒前
可乐啊啊啊完成签到,获得积分10
4秒前
酷波er应助称心起眸采纳,获得10
4秒前
4秒前
5秒前
zhangbaica应助11采纳,获得10
5秒前
lali完成签到,获得积分10
5秒前
6秒前
斯文如娆发布了新的文献求助10
6秒前
dkswy发布了新的文献求助10
6秒前
含章发布了新的文献求助10
6秒前
打打应助Titi采纳,获得10
7秒前
feng完成签到 ,获得积分10
7秒前
酷波er应助简单的呆呆采纳,获得10
7秒前
7秒前
悲凉的康乃馨完成签到,获得积分10
8秒前
8秒前
9秒前
Savannah完成签到,获得积分10
10秒前
上善若水发布了新的文献求助10
11秒前
balabala发布了新的文献求助10
11秒前
lali发布了新的文献求助10
12秒前
饱满若灵发布了新的文献求助10
13秒前
不吃番茄发布了新的文献求助10
14秒前
14秒前
龙龙发布了新的文献求助10
15秒前
lynnie完成签到,获得积分10
16秒前
科研通AI5应助含章采纳,获得10
16秒前
地中海完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3685919
求助须知:如何正确求助?哪些是违规求助? 3236537
关于积分的说明 9826279
捐赠科研通 2948363
什么是DOI,文献DOI怎么找? 1616806
邀请新用户注册赠送积分活动 763906
科研通“疑难数据库(出版商)”最低求助积分说明 738102