Investigating the network structure and causal relationships among bridge symptoms of comorbid depression and anxiety: A Bayesian network analysis

心理学 焦虑 萧条(经济学) 易怒 临床心理学 背景(考古学) 共病 心情 愤怒 精神科 生物 古生物学 经济 宏观经济学
作者
Yu Wang,Zhongquan Li,Xing Cao
出处
期刊:Journal of Clinical Psychology [Wiley]
卷期号:80 (6): 1271-1285 被引量:8
标识
DOI:10.1002/jclp.23663
摘要

Abstract Background The network analysis method emphasizes the interaction between individual symptoms to identify shared or bridging symptoms between depression and anxiety to understand comorbidity. However, the network analysis and community detection approach have limitations in identifying causal relationships among symptoms. This study aims to address this gap by applying Bayesian network (BN) analysis to investigate potential causal relationships. Method Data were collected from a sample of newly enrolled college students. The network structure of depression and anxiety was estimated using the Patient Health Questionnaire‐9 (PHQ‐9) and the Generalized Anxiety Disorder (GAD‐7) Scale measures, respectively. Shared symptoms between depression and anxiety were identified through network analysis and clique percolation (CP) method. The causal relationships among symptoms were estimated using BN. Results The strongest bridge symptoms, as indicated by bridge strength, include sad mood (PHQ2), motor (PHQ8), suicide (PHQ9), restlessness (GAD5), and irritability (GAD6). These bridge symptoms formed a distinct community using the CP algorithm. Sad mood (PHQ2) played an activating role, influencing other symptoms. Meanwhile, restlessness (GAD5) played a mediating role with reciprocal influences on both anxiety and depression symptoms. Motor (PHQ8), suicide (PHQ9), and irritability (GAD6) assumed recipient positions. Conclusion BN analysis presents a valuable approach for investigating the complex interplay between symptoms in the context of comorbid depression and anxiety. It identifies two activating symptoms (i.e., sadness and worry), which serve to underscore the fundamental differences between these two disorders. Additionally, psychomotor symptoms and suicidal ideations are recognized as recipient roles, being influenced by other symptoms within the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luraaaa完成签到,获得积分10
刚刚
刚刚
心灵美的静芙应助huihuo采纳,获得40
1秒前
1秒前
小丹完成签到,获得积分10
1秒前
2秒前
光亮初瑶发布了新的文献求助10
2秒前
3秒前
田様应助my采纳,获得10
3秒前
luraaaa发布了新的文献求助10
3秒前
3秒前
小杭76应助dgqz采纳,获得10
4秒前
4秒前
CodeCraft应助MY采纳,获得10
5秒前
小马甲应助研友_nEjYyZ采纳,获得10
6秒前
111发布了新的文献求助10
7秒前
小丹发布了新的文献求助10
7秒前
水上书发布了新的文献求助10
7秒前
小马哥完成签到,获得积分10
8秒前
王鹏完成签到,获得积分10
9秒前
无心的复天完成签到,获得积分10
9秒前
9秒前
王小果发布了新的文献求助10
9秒前
9秒前
9秒前
NexusExplorer应助秀秀采纳,获得10
9秒前
任小九发布了新的文献求助10
10秒前
77完成签到 ,获得积分10
10秒前
傅以柳完成签到,获得积分10
10秒前
12秒前
桐桐应助魔幻老黑采纳,获得30
13秒前
Hello应助欣喜的人龙采纳,获得10
13秒前
星辰大海应助烛天采纳,获得10
13秒前
14秒前
pure123完成签到,获得积分10
14秒前
lizzie发布了新的文献求助10
14秒前
怡然的忆山完成签到,获得积分20
14秒前
2000.完成签到 ,获得积分10
14秒前
斯文莺完成签到,获得积分10
16秒前
Emma应助yiheng采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5328084
求助须知:如何正确求助?哪些是违规求助? 4467884
关于积分的说明 13903116
捐赠科研通 4360702
什么是DOI,文献DOI怎么找? 2395241
邀请新用户注册赠送积分活动 1388807
关于科研通互助平台的介绍 1359617