Investigating the network structure and causal relationships among bridge symptoms of comorbid depression and anxiety: A Bayesian network analysis

心理学 焦虑 萧条(经济学) 易怒 临床心理学 背景(考古学) 共病 心情 愤怒 精神科 生物 古生物学 经济 宏观经济学
作者
Yu Wang,Zhongquan Li,Xing Cao
出处
期刊:Journal of Clinical Psychology [Wiley]
卷期号:80 (6): 1271-1285 被引量:8
标识
DOI:10.1002/jclp.23663
摘要

Abstract Background The network analysis method emphasizes the interaction between individual symptoms to identify shared or bridging symptoms between depression and anxiety to understand comorbidity. However, the network analysis and community detection approach have limitations in identifying causal relationships among symptoms. This study aims to address this gap by applying Bayesian network (BN) analysis to investigate potential causal relationships. Method Data were collected from a sample of newly enrolled college students. The network structure of depression and anxiety was estimated using the Patient Health Questionnaire‐9 (PHQ‐9) and the Generalized Anxiety Disorder (GAD‐7) Scale measures, respectively. Shared symptoms between depression and anxiety were identified through network analysis and clique percolation (CP) method. The causal relationships among symptoms were estimated using BN. Results The strongest bridge symptoms, as indicated by bridge strength, include sad mood (PHQ2), motor (PHQ8), suicide (PHQ9), restlessness (GAD5), and irritability (GAD6). These bridge symptoms formed a distinct community using the CP algorithm. Sad mood (PHQ2) played an activating role, influencing other symptoms. Meanwhile, restlessness (GAD5) played a mediating role with reciprocal influences on both anxiety and depression symptoms. Motor (PHQ8), suicide (PHQ9), and irritability (GAD6) assumed recipient positions. Conclusion BN analysis presents a valuable approach for investigating the complex interplay between symptoms in the context of comorbid depression and anxiety. It identifies two activating symptoms (i.e., sadness and worry), which serve to underscore the fundamental differences between these two disorders. Additionally, psychomotor symptoms and suicidal ideations are recognized as recipient roles, being influenced by other symptoms within the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助不安枕头采纳,获得10
刚刚
华仔应助吴海娇采纳,获得10
1秒前
1秒前
默默易梦发布了新的文献求助10
2秒前
2秒前
2秒前
孙勇完成签到,获得积分10
2秒前
Orange应助Lemonzhao采纳,获得10
3秒前
大模型应助旺旺掀被采纳,获得10
3秒前
3秒前
泡芙发布了新的文献求助10
3秒前
顾矜应助张慧慧采纳,获得30
3秒前
4秒前
4秒前
YMM完成签到,获得积分10
4秒前
4秒前
玫瑰遇上奶油完成签到 ,获得积分10
4秒前
乐乐应助桑葚草莓冰淇淋采纳,获得10
5秒前
LLL完成签到,获得积分10
5秒前
5秒前
bzc229完成签到,获得积分10
5秒前
sss完成签到,获得积分10
6秒前
韩jl发布了新的文献求助10
6秒前
6秒前
茶卡盐湖完成签到,获得积分10
6秒前
yznfly应助Ww采纳,获得30
6秒前
liz完成签到,获得积分10
6秒前
2438615954完成签到,获得积分10
7秒前
7秒前
7秒前
FF发布了新的文献求助10
7秒前
yang_keai发布了新的文献求助10
8秒前
1230完成签到,获得积分10
9秒前
总是迟到完成签到,获得积分10
9秒前
9秒前
ggr完成签到 ,获得积分10
10秒前
李金玉发布了新的文献求助10
10秒前
harden9159发布了新的文献求助30
10秒前
balabala发布了新的文献求助10
10秒前
xhnashui完成签到,获得积分20
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960721
求助须知:如何正确求助?哪些是违规求助? 3506928
关于积分的说明 11132948
捐赠科研通 3239182
什么是DOI,文献DOI怎么找? 1790081
邀请新用户注册赠送积分活动 872130
科研通“疑难数据库(出版商)”最低求助积分说明 803128