Investigating the network structure and causal relationships among bridge symptoms of comorbid depression and anxiety: A Bayesian network analysis

心理学 焦虑 萧条(经济学) 易怒 临床心理学 背景(考古学) 共病 心情 愤怒 精神科 生物 宏观经济学 古生物学 经济
作者
Yu Wang,Zhongquan Li,Xiaoping Cao
出处
期刊:Journal of Clinical Psychology [Wiley]
卷期号:80 (6): 1271-1285 被引量:2
标识
DOI:10.1002/jclp.23663
摘要

Abstract Background The network analysis method emphasizes the interaction between individual symptoms to identify shared or bridging symptoms between depression and anxiety to understand comorbidity. However, the network analysis and community detection approach have limitations in identifying causal relationships among symptoms. This study aims to address this gap by applying Bayesian network (BN) analysis to investigate potential causal relationships. Method Data were collected from a sample of newly enrolled college students. The network structure of depression and anxiety was estimated using the Patient Health Questionnaire‐9 (PHQ‐9) and the Generalized Anxiety Disorder (GAD‐7) Scale measures, respectively. Shared symptoms between depression and anxiety were identified through network analysis and clique percolation (CP) method. The causal relationships among symptoms were estimated using BN. Results The strongest bridge symptoms, as indicated by bridge strength, include sad mood (PHQ2), motor (PHQ8), suicide (PHQ9), restlessness (GAD5), and irritability (GAD6). These bridge symptoms formed a distinct community using the CP algorithm. Sad mood (PHQ2) played an activating role, influencing other symptoms. Meanwhile, restlessness (GAD5) played a mediating role with reciprocal influences on both anxiety and depression symptoms. Motor (PHQ8), suicide (PHQ9), and irritability (GAD6) assumed recipient positions. Conclusion BN analysis presents a valuable approach for investigating the complex interplay between symptoms in the context of comorbid depression and anxiety. It identifies two activating symptoms (i.e., sadness and worry), which serve to underscore the fundamental differences between these two disorders. Additionally, psychomotor symptoms and suicidal ideations are recognized as recipient roles, being influenced by other symptoms within the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗夏旋完成签到,获得积分10
刚刚
mouxq发布了新的文献求助10
2秒前
Gzdaigzn完成签到,获得积分10
2秒前
lalala发布了新的文献求助10
3秒前
CipherSage应助摩登灰太狼采纳,获得10
5秒前
Brian发布了新的文献求助10
7秒前
飞快的珩发布了新的文献求助10
7秒前
酷波er应助genoy采纳,获得10
8秒前
wanci应助junru采纳,获得10
9秒前
pryturk发布了新的文献求助10
10秒前
momeak完成签到,获得积分10
11秒前
13秒前
无心的秋珊完成签到 ,获得积分10
14秒前
Anais发布了新的文献求助10
14秒前
研友_VZG7GZ应助活力冬日采纳,获得10
14秒前
怡然聪展完成签到 ,获得积分10
14秒前
15秒前
zhr完成签到,获得积分20
15秒前
摩登灰太狼完成签到,获得积分10
15秒前
搜集达人应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Nitric_Oxide应助科研通管家采纳,获得20
16秒前
不配.应助科研通管家采纳,获得20
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
哭泣蛋挞完成签到 ,获得积分10
17秒前
科研通AI2S应助Gzdaigzn采纳,获得10
17秒前
18秒前
Brian完成签到,获得积分20
19秒前
19秒前
火柴盒完成签到,获得积分10
20秒前
JamesPei应助单顺反子采纳,获得10
20秒前
21秒前
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140205
求助须知:如何正确求助?哪些是违规求助? 2791011
关于积分的说明 7797468
捐赠科研通 2447398
什么是DOI,文献DOI怎么找? 1301879
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194