Investigating the network structure and causal relationships among bridge symptoms of comorbid depression and anxiety: A Bayesian network analysis

心理学 焦虑 萧条(经济学) 易怒 临床心理学 背景(考古学) 共病 心情 愤怒 精神科 生物 宏观经济学 古生物学 经济
作者
Yu Wang,Zhongquan Li,Xing Cao
出处
期刊:Journal of Clinical Psychology [Wiley]
卷期号:80 (6): 1271-1285 被引量:14
标识
DOI:10.1002/jclp.23663
摘要

Abstract Background The network analysis method emphasizes the interaction between individual symptoms to identify shared or bridging symptoms between depression and anxiety to understand comorbidity. However, the network analysis and community detection approach have limitations in identifying causal relationships among symptoms. This study aims to address this gap by applying Bayesian network (BN) analysis to investigate potential causal relationships. Method Data were collected from a sample of newly enrolled college students. The network structure of depression and anxiety was estimated using the Patient Health Questionnaire‐9 (PHQ‐9) and the Generalized Anxiety Disorder (GAD‐7) Scale measures, respectively. Shared symptoms between depression and anxiety were identified through network analysis and clique percolation (CP) method. The causal relationships among symptoms were estimated using BN. Results The strongest bridge symptoms, as indicated by bridge strength, include sad mood (PHQ2), motor (PHQ8), suicide (PHQ9), restlessness (GAD5), and irritability (GAD6). These bridge symptoms formed a distinct community using the CP algorithm. Sad mood (PHQ2) played an activating role, influencing other symptoms. Meanwhile, restlessness (GAD5) played a mediating role with reciprocal influences on both anxiety and depression symptoms. Motor (PHQ8), suicide (PHQ9), and irritability (GAD6) assumed recipient positions. Conclusion BN analysis presents a valuable approach for investigating the complex interplay between symptoms in the context of comorbid depression and anxiety. It identifies two activating symptoms (i.e., sadness and worry), which serve to underscore the fundamental differences between these two disorders. Additionally, psychomotor symptoms and suicidal ideations are recognized as recipient roles, being influenced by other symptoms within the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘀哩嘀哩完成签到,获得积分10
1秒前
2秒前
zhanglh完成签到,获得积分10
2秒前
BHX关闭了BHX文献求助
2秒前
cc完成签到,获得积分10
3秒前
4秒前
4秒前
活着完成签到,获得积分10
5秒前
隐形曼青应助汎影采纳,获得10
6秒前
桑榆。完成签到,获得积分20
6秒前
华仔应助myg8627采纳,获得10
8秒前
8秒前
cc关闭了cc文献求助
8秒前
cc关闭了cc文献求助
8秒前
斯文败类应助tina采纳,获得10
9秒前
9秒前
Ava应助小桃枝采纳,获得10
9秒前
9秒前
9秒前
9秒前
iNk应助菜菜采纳,获得20
9秒前
10秒前
10秒前
shang完成签到 ,获得积分10
11秒前
杨冀军完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
Nimeide完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
fffgz发布了新的文献求助10
14秒前
江流发布了新的文献求助10
14秒前
麦当劳薯条完成签到,获得积分20
17秒前
orixero应助汎影采纳,获得10
17秒前
王记伟关注了科研通微信公众号
17秒前
过客发布了新的文献求助10
17秒前
18秒前
jiunuan应助住在魔仙堡的鱼采纳,获得10
19秒前
19秒前
ning发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536670
求助须知:如何正确求助?哪些是违规求助? 4624270
关于积分的说明 14591267
捐赠科研通 4564769
什么是DOI,文献DOI怎么找? 2501907
邀请新用户注册赠送积分活动 1480641
关于科研通互助平台的介绍 1451943