已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards clinical implementation of an AI-algorithm for detection of cervical spine fractures on computed tomography

医学 计算机断层摄影术 颈椎 算法 断层摄影术 放射科 核医学 外科 计算机科学
作者
H.C. Ruitenbeek,Edwin H.G. Oei,Bart L. Schmahl,Eelke M. Bos,Rob J.C.G. Verdonschot,Jacob J. Visser
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:173: 111375-111375
标识
DOI:10.1016/j.ejrad.2024.111375
摘要

Abstract

Background

Artificial intelligence (AI) applications can facilitate detection of cervical spine fractures on CT and reduce time to diagnosis by prioritizing suspected cases.

Purpose

To assess the effect on time to diagnose cervical spine fractures on CT and diagnostic accuracy of a commercially available AI application.

Materials and methods

In this study (June 2020 - March 2022) with historic controls and prospective evaluation, we evaluated regulatory-cleared AI-software to prioritize cervical spine fractures on CT. All patients underwent non-contrast CT of the cervical spine. The time between CT acquisition and the moment the scan was first opened (DNT) was compared between the retrospective and prospective cohorts. The reference standard for determining diagnostic accuracy was the radiology report created in routine clinical workflow and adjusted by a senior radiologist. Discrepant cases were reviewed and clinical relevance of missed fractures was determined.

Results

2973 (mean age, 55.4 ± 19.7 [standard deviation]; 1857 men) patients were analyzed by AI, including 2036 retrospective and 938 prospective cases. Overall prevalence of cervical spine fractures was 7.6 %. The DNT was 18 % (5 min) shorter in the prospective cohort. In scans positive for cervical spine fracture according to the reference standard, DNT was 46 % (16 min) shorter in the prospective cohort. Overall sensitivity of the AI application was 89.8 % (95 % CI: 84.2–94.0 %), specificity was 95.3 % (95 % CI: 94.2–96.2 %), and diagnostic accuracy was 94.8 % (95 % CI: 93.8–95.8 %). Negative predictive value was 99.1 % (95 % CI: 98.5–99.4 %) and positive predictive value was 63.0 % (95 % CI: 58.0–67.8 %). 22 fractures were missed by AI of which 5 required stabilizing therapy.

Conclusion

A time gain of 16 min to diagnosis for fractured cases was observed after introducing AI. Although AI-assisted workflow prioritization of cervical spine fractures on CT shows high diagnostic accuracy, clinically relevant cases were missed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实可愁发布了新的文献求助10
刚刚
boss发布了新的文献求助50
2秒前
热爱学习发布了新的文献求助10
3秒前
5秒前
Ava应助JFP采纳,获得10
6秒前
柚子完成签到 ,获得积分10
7秒前
丘比特应助听雪冬眠采纳,获得10
8秒前
wanci应助MIO采纳,获得10
8秒前
没有蛀牙完成签到 ,获得积分20
8秒前
便宜小师傅完成签到 ,获得积分10
9秒前
11秒前
12秒前
研友_VZG7GZ应助煜琪采纳,获得10
13秒前
Ava应助顾难摧采纳,获得10
15秒前
SYX发布了新的文献求助20
16秒前
16秒前
啦啦啦发布了新的文献求助10
16秒前
18秒前
浅浅给浅浅的求助进行了留言
18秒前
orixero应助hongyi采纳,获得10
18秒前
20秒前
鬲木发布了新的文献求助10
22秒前
Ii发布了新的文献求助10
22秒前
22秒前
大个应助橘子采纳,获得10
24秒前
沉默冬易发布了新的文献求助30
24秒前
24秒前
听雪冬眠发布了新的文献求助10
24秒前
25秒前
25秒前
顾难摧发布了新的文献求助10
27秒前
科研通AI5应助西雅采纳,获得150
27秒前
29秒前
千空应助shineedou采纳,获得10
30秒前
coral发布了新的文献求助10
30秒前
Lucas应助陪七七去旅行采纳,获得10
31秒前
hongyi完成签到,获得积分10
32秒前
unborned完成签到 ,获得积分10
32秒前
容言发布了新的文献求助10
33秒前
哇哈哈6556完成签到,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516092
求助须知:如何正确求助?哪些是违规求助? 3098347
关于积分的说明 9239137
捐赠科研通 2793314
什么是DOI,文献DOI怎么找? 1532982
邀请新用户注册赠送积分活动 712484
科研通“疑难数据库(出版商)”最低求助积分说明 707323