Physics knowledge-based transfer learning between buildings for seismic response prediction

知识转移 学习迁移 建筑工程 物理 工程类 地震学 计算机科学 地质学 人工智能 知识管理
作者
Yao Hu,Wei Guo,Zian Xu,C. Shi
出处
期刊:Soil Dynamics and Earthquake Engineering [Elsevier]
卷期号:177: 108420-108420 被引量:10
标识
DOI:10.1016/j.soildyn.2023.108420
摘要

The recent advance in deep learning has attracted considerable interest for employing the state-of-the-art methods to solve engineering problems. However, the applicability of machine learning based models is hindered by the high cost of big data acquisition and task-specific difficulties. This paper presents a framework of physics knowledge-based transfer learning (Phy-KTL) neural networks that integrates the powerful learning capacity of physics-informed neural networks (PINNs) and the flexible transferability of model-based transfer learning technique to enhance structural seismic response prediction in the context of limited labelled datasets. The leverage of physics knowledge (represented by Runge-Kutta solver) allows the neural networks to better capture the structural nonlinear pattern. The use of model-based transfer learning improves the model generality by transferring features extracted from the source building to target buildings. The effectiveness of Phy-KTL in predicting seismic responses between target buildings is numerically validated as compared with Data-driven neural networks, PINNs, and Data-based transfer learning (Data-KTL). A practical application, which uses Phy-KTL to transfer features extracted from the numerical model to the physical building tested on the shaking table, validates that Phy-KTL is robust and effective to improve seismic response prediction of target buildings with limited labelled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xwj完成签到,获得积分10
1秒前
张慧杰完成签到,获得积分10
3秒前
3秒前
susan发布了新的文献求助10
3秒前
dw完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
无奈的醉薇完成签到,获得积分10
4秒前
远晴完成签到,获得积分10
5秒前
乐乐应助lynn采纳,获得10
5秒前
5秒前
WangYF2025完成签到,获得积分10
6秒前
桐桐应助YJ采纳,获得10
6秒前
小鱼发布了新的文献求助10
7秒前
科研通AI6应助guard采纳,获得10
7秒前
万能图书馆应助墨大白采纳,获得10
8秒前
西瓜完成签到,获得积分10
8秒前
jiaxiang发布了新的文献求助10
8秒前
瀅瀅发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
chen完成签到,获得积分10
9秒前
Sky发布了新的文献求助10
9秒前
9秒前
fan完成签到,获得积分20
10秒前
10秒前
wxz1236完成签到 ,获得积分10
10秒前
10秒前
坚定涵柏发布了新的文献求助10
10秒前
bkagyin应助wangwei采纳,获得10
11秒前
11秒前
11秒前
小二发布了新的文献求助10
12秒前
fan发布了新的文献求助10
13秒前
13秒前
200308156313发布了新的文献求助10
13秒前
西瓜发布了新的文献求助10
14秒前
郭干成发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508548
求助须知:如何正确求助?哪些是违规求助? 4603695
关于积分的说明 14487234
捐赠科研通 4538072
什么是DOI,文献DOI怎么找? 2486805
邀请新用户注册赠送积分活动 1469382
关于科研通互助平台的介绍 1441636