亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics knowledge-based transfer learning between buildings for seismic response prediction

知识转移 学习迁移 建筑工程 物理 工程类 地震学 计算机科学 地质学 人工智能 知识管理
作者
Yao Hu,Wei Guo,Zian Xu,C. Shi
出处
期刊:Soil Dynamics and Earthquake Engineering [Elsevier BV]
卷期号:177: 108420-108420 被引量:10
标识
DOI:10.1016/j.soildyn.2023.108420
摘要

The recent advance in deep learning has attracted considerable interest for employing the state-of-the-art methods to solve engineering problems. However, the applicability of machine learning based models is hindered by the high cost of big data acquisition and task-specific difficulties. This paper presents a framework of physics knowledge-based transfer learning (Phy-KTL) neural networks that integrates the powerful learning capacity of physics-informed neural networks (PINNs) and the flexible transferability of model-based transfer learning technique to enhance structural seismic response prediction in the context of limited labelled datasets. The leverage of physics knowledge (represented by Runge-Kutta solver) allows the neural networks to better capture the structural nonlinear pattern. The use of model-based transfer learning improves the model generality by transferring features extracted from the source building to target buildings. The effectiveness of Phy-KTL in predicting seismic responses between target buildings is numerically validated as compared with Data-driven neural networks, PINNs, and Data-based transfer learning (Data-KTL). A practical application, which uses Phy-KTL to transfer features extracted from the numerical model to the physical building tested on the shaking table, validates that Phy-KTL is robust and effective to improve seismic response prediction of target buildings with limited labelled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
凉白开发布了新的文献求助10
4秒前
徐矜发布了新的文献求助10
9秒前
正直水池完成签到 ,获得积分10
16秒前
徐矜完成签到,获得积分10
17秒前
25秒前
迷迭香完成签到,获得积分10
28秒前
30秒前
迷迭香发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助20
44秒前
李爱国应助迷迭香采纳,获得10
46秒前
51秒前
kaio_escolar完成签到,获得积分10
53秒前
56秒前
刘刘完成签到 ,获得积分10
58秒前
Owen应助冷静的傲易采纳,获得30
1分钟前
1分钟前
1分钟前
小狗发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
HaoHao04发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
英喆完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
5分钟前
量子星尘发布了新的文献求助30
5分钟前
正直箴完成签到,获得积分10
5分钟前
正直箴发布了新的文献求助10
5分钟前
LaFee完成签到,获得积分10
5分钟前
HaoHao04发布了新的文献求助10
5分钟前
5分钟前
5分钟前
隐形曼青应助夕夜采纳,获得10
5分钟前
幽默的溪灵应助米粒采纳,获得10
5分钟前
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960135
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128683
捐赠科研通 3238299
什么是DOI,文献DOI怎么找? 1789684
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069