Robust Visible-Infrared Person Re-Identification Based on Polymorphic Mask and Wavelet Graph Convolutional Network

计算机科学 稳健性(进化) 人工智能 判别式 图形 模式识别(心理学) 小波 计算机视觉 理论计算机科学 生物化学 基因 化学
作者
Rui Sun,Long Chen,Lei Zhang,Ruirui Xie,Jun Gao
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2800-2813 被引量:2
标识
DOI:10.1109/tifs.2024.3354377
摘要

When deploying re-identification (ReID) models in the field of public safety, understanding the robustness of models to various types of corrupted images is crucial. Unfortunately, in the real world, images are always contaminated (e.g., noise, blur, and weather changes), which is ignored by existing visible-infrared person re-identification (VI-ReID) models. The performance of existing models tested in corrupted scenes is severely degraded. Therefore, learning corruption-invariant representations for corrupted images in VI-ReID is valuable and deserves further investigation. We design a polymorphic masked wavelet graph convolutional network for VI-ReID under corrupted scenes. Firstly, a cross-modality data augmentation algorithm is designed to construct a mixed image set that merges multi-modality attributes to improve robustness against interference. Secondly, a dual-branch network consisting of a global branch and a graph structure branch is designed. The global branch extracts overall information. While the graph structure branch is a wavelet-based graph convolutional module that utilizes the robustness of human structural information to corruptions and modalities, it can filter noise and extract discriminative features specifically targeted for cross-modality scenes. Finally, the global branch and the graph structure branch are integrated, and modality consistency loss is designed to match the branches with hetero-center triplet loss. Experiments show that our method can effectively alleviate degradation problems under corrupted environments such as noise, blur, digitization, and weather changes, and achieve state-of-the-art on corrupted datasets. Besides, it still maintains good performance on clean datasets, facilitating the reliable deployment of VI-ReID in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
健忘白完成签到,获得积分10
1秒前
852应助雪白巨人采纳,获得10
1秒前
1秒前
今后应助hearan采纳,获得10
2秒前
风趣的凝雁完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
劳永杰完成签到,获得积分10
4秒前
5秒前
猫捡球完成签到,获得积分10
7秒前
8秒前
8秒前
zhang发布了新的文献求助10
9秒前
Orange应助大花猫采纳,获得20
9秒前
10秒前
万能图书馆应助Djnsbj采纳,获得10
11秒前
想个网名真困难完成签到,获得积分10
11秒前
12秒前
HBY发布了新的文献求助10
12秒前
标致小翠发布了新的文献求助10
12秒前
超帅的遥完成签到,获得积分10
12秒前
董董完成签到,获得积分10
12秒前
tomf完成签到,获得积分10
12秒前
Akim应助abuall采纳,获得30
13秒前
13秒前
14秒前
15秒前
15秒前
等DENG完成签到 ,获得积分10
15秒前
Silence完成签到 ,获得积分10
16秒前
淡淡夕阳发布了新的文献求助10
17秒前
17秒前
科研通AI2S应助清脆的灵煌采纳,获得10
17秒前
17秒前
易点点发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511965
关于积分的说明 11161125
捐赠科研通 3246769
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804403