Robust Visible-Infrared Person Re-Identification Based on Polymorphic Mask and Wavelet Graph Convolutional Network

计算机科学 稳健性(进化) 人工智能 判别式 图形 模式识别(心理学) 小波 计算机视觉 理论计算机科学 生物化学 化学 基因
作者
Rui Sun,Long Chen,Lei Zhang,Ruirui Xie,Jun Gao
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2800-2813 被引量:2
标识
DOI:10.1109/tifs.2024.3354377
摘要

When deploying re-identification (ReID) models in the field of public safety, understanding the robustness of models to various types of corrupted images is crucial. Unfortunately, in the real world, images are always contaminated (e.g., noise, blur, and weather changes), which is ignored by existing visible-infrared person re-identification (VI-ReID) models. The performance of existing models tested in corrupted scenes is severely degraded. Therefore, learning corruption-invariant representations for corrupted images in VI-ReID is valuable and deserves further investigation. We design a polymorphic masked wavelet graph convolutional network for VI-ReID under corrupted scenes. Firstly, a cross-modality data augmentation algorithm is designed to construct a mixed image set that merges multi-modality attributes to improve robustness against interference. Secondly, a dual-branch network consisting of a global branch and a graph structure branch is designed. The global branch extracts overall information. While the graph structure branch is a wavelet-based graph convolutional module that utilizes the robustness of human structural information to corruptions and modalities, it can filter noise and extract discriminative features specifically targeted for cross-modality scenes. Finally, the global branch and the graph structure branch are integrated, and modality consistency loss is designed to match the branches with hetero-center triplet loss. Experiments show that our method can effectively alleviate degradation problems under corrupted environments such as noise, blur, digitization, and weather changes, and achieve state-of-the-art on corrupted datasets. Besides, it still maintains good performance on clean datasets, facilitating the reliable deployment of VI-ReID in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjwless完成签到,获得积分10
刚刚
稀罕你发布了新的文献求助10
刚刚
圣晟胜发布了新的文献求助10
刚刚
寒冷半雪完成签到,获得积分10
4秒前
善良易文发布了新的文献求助10
4秒前
orixero应助GXY采纳,获得30
4秒前
香蕉不言发布了新的文献求助10
4秒前
迅速海云发布了新的文献求助10
5秒前
xiamovivi完成签到,获得积分10
6秒前
bitahu完成签到,获得积分20
6秒前
路边一颗小草完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
乐乐应助勤劳落雁采纳,获得30
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
852应助独特亦旋采纳,获得10
8秒前
8秒前
8秒前
无花果应助科研通管家采纳,获得10
8秒前
清秀灵薇完成签到,获得积分10
10秒前
超哥完成签到,获得积分10
10秒前
11秒前
bkagyin应助TT采纳,获得10
11秒前
一只科研pig完成签到 ,获得积分10
11秒前
oliver501发布了新的文献求助10
12秒前
15秒前
16秒前
科研路上的干饭桶完成签到,获得积分10
16秒前
所所应助YYJ25采纳,获得10
16秒前
传奇3应助ubiqutin采纳,获得10
17秒前
Wiggins完成签到,获得积分10
17秒前
adi完成签到,获得积分10
17秒前
小马甲应助猫了个喵采纳,获得10
17秒前
浮浮世世给浮浮世世的求助进行了留言
18秒前
海鸥海鸥发布了新的文献求助10
19秒前
田様应助稀罕你采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849