亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advanced deep learning approach for enhancing crop disease detection in agriculture using hyperspectral imaging

自编码 高光谱成像 计算机科学 人工智能 深度学习 粮食安全 特征提取 农业 特征(语言学) 机器学习 模式识别(心理学) 农业工程 工程类 地理 考古 语言学 哲学
作者
Djabeur Mohamed Seifeddine Zekrifa,Dharmanna Lamani,Gogineni Krishna Chaitanya,K. V. Kanimozhi,Akash Saraswat,D. Sugumar,D. Vetrithangam,Ashok Kumar Koshariya,Manthur Sreeramulu Manjunath,A. Rajaram
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (2): 3281-3294 被引量:7
标识
DOI:10.3233/jifs-235582
摘要

Crop diseases pose significant challenges to global food security and agricultural sustainability. Timely and accurate disease detection is crucial for effective disease management and minimizing crop losses. In recent years, hyperspectral imaging has emerged as a promising technology for non-destructive and early disease detection in crops. This research paper presents an advanced deep learning approach for enhancing crop disease detection using hyperspectral imaging. The primary objective is to propose a hybrid Autoencoder-Generative Adversarial Network (AE-GAN) model that effectively extracts meaningful features from hyperspectral images and addresses the limitations of existing techniques. The hybrid AE-GAN model combines the strengths of the Autoencoder for feature extraction and the Generative Adversarial Network for synthetic sample generation. Through extensive evaluation, the proposed model outperforms existing techniques, achieving exceptional accuracy in crop disease detection. The results demonstrate the superiority of the hybrid AE-GAN model, offering substantial advantages in terms of feature extraction, synthetic sample generation, and utilization of spatial and spectral information. The proposed model’s contributions to sustainable agriculture and global food security make it a valuable tool for advancing agricultural practices and enhancing crop health monitoring. With its promising implications, the hybrid AE-GAN model represents a significant advancement in crop disease detection, paving the way for a more resilient and food-secure future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
萝卜猪完成签到,获得积分10
38秒前
浮游应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
54秒前
57秒前
1分钟前
FashionBoy应助迅速的岩采纳,获得10
1分钟前
1分钟前
迅速的岩发布了新的文献求助10
1分钟前
1分钟前
在水一方应助迅速的岩采纳,获得10
2分钟前
科研通AI2S应助Yuuw采纳,获得10
2分钟前
YONGGE完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
无虞完成签到,获得积分10
3分钟前
在水一方应助研友_R2D2采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
迅速的岩发布了新的文献求助10
3分钟前
3分钟前
3分钟前
4分钟前
研友_R2D2发布了新的文献求助10
4分钟前
生姜批发刘哥完成签到 ,获得积分0
4分钟前
朴实剑通完成签到 ,获得积分10
4分钟前
梓歆发布了新的文献求助30
4分钟前
九司应助研友_R2D2采纳,获得10
4分钟前
发发完成签到 ,获得积分10
4分钟前
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
打打应助科研通管家采纳,获得10
4分钟前
4分钟前
Alisha完成签到,获得积分10
4分钟前
4分钟前
梓歆发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583243
关于积分的说明 14389081
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472860
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553