Advanced deep learning approach for enhancing crop disease detection in agriculture using hyperspectral imaging

自编码 高光谱成像 计算机科学 人工智能 深度学习 粮食安全 特征提取 农业 特征(语言学) 机器学习 模式识别(心理学) 农业工程 工程类 地理 考古 语言学 哲学
作者
Djabeur Mohamed Seifeddine Zekrifa,Dharmanna Lamani,Gogineni Krishna Chaitanya,K. V. Kanimozhi,Akash Saraswat,D. Sugumar,D. Vetrithangam,Ashok Kumar Koshariya,Manthur Sreeramulu Manjunath,A. Rajaram
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (2): 3281-3294 被引量:7
标识
DOI:10.3233/jifs-235582
摘要

Crop diseases pose significant challenges to global food security and agricultural sustainability. Timely and accurate disease detection is crucial for effective disease management and minimizing crop losses. In recent years, hyperspectral imaging has emerged as a promising technology for non-destructive and early disease detection in crops. This research paper presents an advanced deep learning approach for enhancing crop disease detection using hyperspectral imaging. The primary objective is to propose a hybrid Autoencoder-Generative Adversarial Network (AE-GAN) model that effectively extracts meaningful features from hyperspectral images and addresses the limitations of existing techniques. The hybrid AE-GAN model combines the strengths of the Autoencoder for feature extraction and the Generative Adversarial Network for synthetic sample generation. Through extensive evaluation, the proposed model outperforms existing techniques, achieving exceptional accuracy in crop disease detection. The results demonstrate the superiority of the hybrid AE-GAN model, offering substantial advantages in terms of feature extraction, synthetic sample generation, and utilization of spatial and spectral information. The proposed model’s contributions to sustainable agriculture and global food security make it a valuable tool for advancing agricultural practices and enhancing crop health monitoring. With its promising implications, the hybrid AE-GAN model represents a significant advancement in crop disease detection, paving the way for a more resilient and food-secure future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏的黑夜完成签到,获得积分10
1秒前
1秒前
1秒前
淑芬发布了新的文献求助10
1秒前
嘿嘿发布了新的文献求助10
2秒前
momo应助uuuu采纳,获得10
2秒前
nb小子完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
小洋完成签到,获得积分10
6秒前
NIHAO完成签到,获得积分10
6秒前
Achhz发布了新的文献求助10
7秒前
LX完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
FadeSv完成签到,获得积分10
8秒前
sulin关注了科研通微信公众号
9秒前
NIHAO发布了新的文献求助10
9秒前
Chris发布了新的文献求助10
10秒前
不舍天真发布了新的文献求助10
10秒前
10秒前
酷波er应助熊猫采纳,获得10
10秒前
年轻迪奥发布了新的文献求助10
12秒前
12秒前
顾矜应助王艺霖采纳,获得10
12秒前
NI发布了新的文献求助10
13秒前
FIREWORK完成签到,获得积分10
13秒前
lwb完成签到,获得积分10
14秒前
14秒前
小洋关注了科研通微信公众号
14秒前
搜集达人应助LBQ采纳,获得10
15秒前
求知的周发布了新的文献求助30
19秒前
19秒前
彩色耳机完成签到,获得积分10
19秒前
平常兰发布了新的文献求助10
20秒前
20秒前
麦地娜发布了新的文献求助10
21秒前
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049