Advanced deep learning approach for enhancing crop disease detection in agriculture using hyperspectral imaging

自编码 高光谱成像 计算机科学 人工智能 深度学习 粮食安全 特征提取 农业 特征(语言学) 机器学习 模式识别(心理学) 农业工程 工程类 地理 考古 语言学 哲学
作者
Djabeur Mohamed Seifeddine Zekrifa,Dharmanna Lamani,Gogineni Krishna Chaitanya,K. V. Kanimozhi,Akash Saraswat,D. Sugumar,D. Vetrithangam,Ashok Kumar Koshariya,Manthur Sreeramulu Manjunath,A. Rajaram
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (2): 3281-3294 被引量:7
标识
DOI:10.3233/jifs-235582
摘要

Crop diseases pose significant challenges to global food security and agricultural sustainability. Timely and accurate disease detection is crucial for effective disease management and minimizing crop losses. In recent years, hyperspectral imaging has emerged as a promising technology for non-destructive and early disease detection in crops. This research paper presents an advanced deep learning approach for enhancing crop disease detection using hyperspectral imaging. The primary objective is to propose a hybrid Autoencoder-Generative Adversarial Network (AE-GAN) model that effectively extracts meaningful features from hyperspectral images and addresses the limitations of existing techniques. The hybrid AE-GAN model combines the strengths of the Autoencoder for feature extraction and the Generative Adversarial Network for synthetic sample generation. Through extensive evaluation, the proposed model outperforms existing techniques, achieving exceptional accuracy in crop disease detection. The results demonstrate the superiority of the hybrid AE-GAN model, offering substantial advantages in terms of feature extraction, synthetic sample generation, and utilization of spatial and spectral information. The proposed model’s contributions to sustainable agriculture and global food security make it a valuable tool for advancing agricultural practices and enhancing crop health monitoring. With its promising implications, the hybrid AE-GAN model represents a significant advancement in crop disease detection, paving the way for a more resilient and food-secure future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干羞花完成签到,获得积分10
2秒前
酷波er应助gyl采纳,获得10
3秒前
研友_pnxEqZ完成签到,获得积分10
5秒前
Ava应助Zbre采纳,获得10
6秒前
whl_321发布了新的文献求助10
6秒前
benben应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
FIN应助科研通管家采纳,获得30
8秒前
8秒前
benben应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
heavenhorse应助科研通管家采纳,获得20
8秒前
传奇3应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
11秒前
12秒前
12秒前
RivedroiteLynn完成签到 ,获得积分10
13秒前
nczpf2010发布了新的文献求助10
14秒前
研友_pnxEqZ发布了新的文献求助10
16秒前
ZYQ发布了新的文献求助10
17秒前
领导范儿应助whl_321采纳,获得10
18秒前
18秒前
橙汁完成签到 ,获得积分10
18秒前
葉要加油完成签到,获得积分10
19秒前
葉要加油发布了新的文献求助10
22秒前
weishen完成签到,获得积分0
24秒前
24秒前
ZYQ完成签到,获得积分10
25秒前
852应助liyanping采纳,获得10
26秒前
27秒前
27秒前
Lanyx完成签到,获得积分10
28秒前
28秒前
28秒前
29秒前
Eason完成签到,获得积分10
30秒前
Lanyx发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578