Advanced deep learning approach for enhancing crop disease detection in agriculture using hyperspectral imaging

自编码 高光谱成像 计算机科学 人工智能 深度学习 粮食安全 特征提取 农业 特征(语言学) 机器学习 模式识别(心理学) 农业工程 工程类 地理 考古 语言学 哲学
作者
Djabeur Mohamed Seifeddine Zekrifa,Dharmanna Lamani,Gogineni Krishna Chaitanya,K. V. Kanimozhi,Akash Saraswat,D. Sugumar,D. Vetrithangam,Ashok Kumar Koshariya,Manthur Sreeramulu Manjunath,A. Rajaram
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (2): 3281-3294 被引量:7
标识
DOI:10.3233/jifs-235582
摘要

Crop diseases pose significant challenges to global food security and agricultural sustainability. Timely and accurate disease detection is crucial for effective disease management and minimizing crop losses. In recent years, hyperspectral imaging has emerged as a promising technology for non-destructive and early disease detection in crops. This research paper presents an advanced deep learning approach for enhancing crop disease detection using hyperspectral imaging. The primary objective is to propose a hybrid Autoencoder-Generative Adversarial Network (AE-GAN) model that effectively extracts meaningful features from hyperspectral images and addresses the limitations of existing techniques. The hybrid AE-GAN model combines the strengths of the Autoencoder for feature extraction and the Generative Adversarial Network for synthetic sample generation. Through extensive evaluation, the proposed model outperforms existing techniques, achieving exceptional accuracy in crop disease detection. The results demonstrate the superiority of the hybrid AE-GAN model, offering substantial advantages in terms of feature extraction, synthetic sample generation, and utilization of spatial and spectral information. The proposed model’s contributions to sustainable agriculture and global food security make it a valuable tool for advancing agricultural practices and enhancing crop health monitoring. With its promising implications, the hybrid AE-GAN model represents a significant advancement in crop disease detection, paving the way for a more resilient and food-secure future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yearluren给yearluren的求助进行了留言
刚刚
czs发布了新的文献求助10
1秒前
3秒前
Jun完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
5秒前
幼萱完成签到,获得积分10
5秒前
kai关闭了kai文献求助
5秒前
5秒前
云竹丶完成签到,获得积分10
5秒前
长情笑柳完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
周末不上发条完成签到,获得积分10
6秒前
金2022完成签到,获得积分10
7秒前
hrk完成签到,获得积分10
7秒前
7秒前
1351567822应助旦皋采纳,获得50
7秒前
8秒前
无极微光应助白英采纳,获得20
8秒前
8秒前
8秒前
嘭嘭嘭发布了新的文献求助20
9秒前
9秒前
彭于晏应助开心紫安采纳,获得10
9秒前
10秒前
10秒前
mmiww完成签到,获得积分10
10秒前
10秒前
宝可梦大师完成签到,获得积分10
11秒前
啦啦啦完成签到,获得积分10
11秒前
yoowt发布了新的文献求助10
11秒前
cnyyp发布了新的文献求助10
11秒前
小蘑菇应助山木采纳,获得10
11秒前
12秒前
13秒前
13秒前
XMY147305完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665315
求助须知:如何正确求助?哪些是违规求助? 4875879
关于积分的说明 15112944
捐赠科研通 4824400
什么是DOI,文献DOI怎么找? 2582734
邀请新用户注册赠送积分活动 1536689
关于科研通互助平台的介绍 1495315