Advanced deep learning approach for enhancing crop disease detection in agriculture using hyperspectral imaging

自编码 高光谱成像 计算机科学 人工智能 深度学习 粮食安全 特征提取 农业 特征(语言学) 机器学习 模式识别(心理学) 农业工程 工程类 地理 考古 语言学 哲学
作者
Djabeur Mohamed Seifeddine Zekrifa,Dharmanna Lamani,Gogineni Krishna Chaitanya,K. V. Kanimozhi,Akash Saraswat,D. Sugumar,D. Vetrithangam,Ashok Kumar Koshariya,Manthur Sreeramulu Manjunath,A. Rajaram
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (2): 3281-3294 被引量:7
标识
DOI:10.3233/jifs-235582
摘要

Crop diseases pose significant challenges to global food security and agricultural sustainability. Timely and accurate disease detection is crucial for effective disease management and minimizing crop losses. In recent years, hyperspectral imaging has emerged as a promising technology for non-destructive and early disease detection in crops. This research paper presents an advanced deep learning approach for enhancing crop disease detection using hyperspectral imaging. The primary objective is to propose a hybrid Autoencoder-Generative Adversarial Network (AE-GAN) model that effectively extracts meaningful features from hyperspectral images and addresses the limitations of existing techniques. The hybrid AE-GAN model combines the strengths of the Autoencoder for feature extraction and the Generative Adversarial Network for synthetic sample generation. Through extensive evaluation, the proposed model outperforms existing techniques, achieving exceptional accuracy in crop disease detection. The results demonstrate the superiority of the hybrid AE-GAN model, offering substantial advantages in terms of feature extraction, synthetic sample generation, and utilization of spatial and spectral information. The proposed model’s contributions to sustainable agriculture and global food security make it a valuable tool for advancing agricultural practices and enhancing crop health monitoring. With its promising implications, the hybrid AE-GAN model represents a significant advancement in crop disease detection, paving the way for a more resilient and food-secure future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
完美世界应助周美言采纳,获得10
刚刚
1秒前
1秒前
2秒前
科克完成签到,获得积分20
2秒前
2秒前
你嵙这个期刊没买完成签到,获得积分10
2秒前
3秒前
3秒前
赘婿应助xiaxia采纳,获得10
3秒前
3秒前
乔笑晴完成签到,获得积分10
4秒前
陈琛发布了新的文献求助10
4秒前
Joshua完成签到,获得积分10
4秒前
一个完成签到,获得积分20
4秒前
orixero应助于魁元采纳,获得10
4秒前
5秒前
李li发布了新的文献求助10
5秒前
5秒前
LSH慧发布了新的文献求助10
5秒前
5秒前
ww完成签到,获得积分10
5秒前
Orange应助八九采纳,获得10
6秒前
清爽映之完成签到,获得积分10
6秒前
luha发布了新的文献求助10
7秒前
7秒前
一个发布了新的文献求助10
7秒前
Merry发布了新的文献求助10
8秒前
9秒前
叶远望发布了新的文献求助10
9秒前
hklong完成签到,获得积分10
9秒前
9秒前
hht发布了新的文献求助10
9秒前
一昂杨完成签到,获得积分10
9秒前
宁静致远完成签到,获得积分10
9秒前
毛球收藏家完成签到,获得积分10
9秒前
ronnie发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647530
求助须知:如何正确求助?哪些是违规求助? 4773705
关于积分的说明 15039847
捐赠科研通 4806303
什么是DOI,文献DOI怎么找? 2570208
邀请新用户注册赠送积分活动 1527046
关于科研通互助平台的介绍 1486132