过电位
异质结
析氧
塔菲尔方程
材料科学
电子转移
氢氧化物
电催化剂
层状双氢氧化物
化学工程
纳米颗粒
带隙
纳米技术
化学
电极
光化学
无机化学
光电子学
物理化学
电化学
工程类
作者
Shuang Wang,Kai Ge,He Cui,Shun‐Li Li,Yongfang Yang,Mingwang Pan,Lei Zhu
标识
DOI:10.1016/j.cej.2023.147831
摘要
A flower-like core–shell heterostructured oxygen evolution reaction (OER) electrocatalyst based on tetragonal BaTiO3 nanoparticles (t-BTO NPs) and NiFe-layered double hydroxide (NiFe-LDH) nanoarrays was prepared in this study. The influence from the self-polarization effect of t-BTO on the OER performance of NiFe-LDH is reported. Intriguingly, the OER activity of the t-BTO@NiFe-LDH heterojunctions in an alkaline media (1.0 M KOH) exhibited a low overpotential of 186 mV at 10 mA/cm2 and a low Tafel slope of 38.3 mV dec-1, which were far superior to those of the component materials: NiFe-LDH (267 mV and 94.8 mV dec-1) and t-BTO NPs (517 mV and 132.4 mV dec-1). Density functional theory (DFT) calculations revealed that the effective electronic modulation between t-BTO NPs and NiFe-LDH nanoplatelets narrowed the bandgap, promoted the electric conductivity, moderately raised Ed (i.e., energy level of the d-band center), optimized the adsorption ability of the oxygen-containing intermediates (*O, *OH, and *OOH), and induced an apparent reduction in the free energy barrier for the transformation from O* to OOH* in the t-BTO@NiFe-LDH heterojunctions. The PDOS result confirmed that t-BTO in the heterojunctions was easier to polarize, which can cause the rapid electron transfer in the OER process. In these heterostructures, the interface tension between BTO NPs and NiFe-LDH endowed BTO with easier self-polarization, thus leading to greater band tilting and faster electron transfer. Multiple synergistic effects of the flower-like core–shell t-BTO@NiFe-LDH heterojunctions enabled them with higher electrocatalytic activity. This work provides an in-depth understanding of the rational design of a high-efficiency, noble metal-free ferroelectric OER electrocatalyst based on the self-polarization of t-BTO NPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI