Mesolimbic Neural Response Dynamics Predict Future Individual Alcohol Drinking in Mice

被盖腹侧区 心理学 多巴胺 神经科学 奖励制度 多巴胺能
作者
Sarah Montgomery,Long Li,Scott J. Russo,Erin S. Calipari,Eric J. Nestler,Carole Morel,Ming‐Hu Han
出处
期刊:Biological Psychiatry [Elsevier]
卷期号:95 (10): 951-962 被引量:2
标识
DOI:10.1016/j.biopsych.2023.11.019
摘要

Background Individual variability in response to rewarding stimuli is a striking but understudied phenomenon. The mesolimbic dopamine system is critical in encoding the reinforcing properties of both natural reward and alcohol; however, how innate or baseline differences in the response dynamics of this circuit define individual behavior and shape future vulnerability to alcohol remain unknown. Methods Using naturalistic behavioral assays, a voluntary alcohol drinking paradigm, in vivo fiber photometry, in vivo electrophysiology, and chemogenetics, we investigated how differences in mesolimbic neural circuit activity contribute to the individual variability seen in reward processing and, by proxy, alcohol drinking. Results We first characterized heterogeneous behavioral and neural responses to natural reward and defined how these baseline responses predicted future individual alcohol-drinking phenotypes in male mice. We then determined spontaneous ventral tegmental area dopamine neuron firing profiles associated with responses to natural reward that predicted alcohol drinking. Using a dual chemogenetic approach, we mimicked specific mesolimbic dopamine neuron firing activity before or during voluntary alcohol drinking to link unique neurophysiological profiles to individual phenotype. We show that hyperdopaminergic individuals exhibit a lower neuronal response to both natural reward and alcohol that predicts lower levels of alcohol consumption in the future. Conclusions These findings reveal unique, circuit-specific neural signatures that predict future individual vulnerability or resistance to alcohol and expand the current knowledge base on how some individuals are able to titrate their alcohol consumption whereas others go on to engage in unhealthy alcohol-drinking behaviors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助坦率紫烟采纳,获得10
1秒前
1秒前
大黄柿子发布了新的文献求助10
2秒前
hhh完成签到,获得积分20
2秒前
脑洞疼应助A章采纳,获得10
3秒前
万元帅发布了新的文献求助10
3秒前
明天不用早起了完成签到,获得积分10
3秒前
求知的菜鸟完成签到,获得积分20
3秒前
4秒前
4秒前
桐桐应助Carrido采纳,获得10
5秒前
冷傲士萧完成签到,获得积分10
5秒前
古月完成签到,获得积分10
5秒前
7秒前
在水一方应助jj采纳,获得20
7秒前
kkk发布了新的文献求助10
8秒前
方塘完成签到,获得积分10
9秒前
11秒前
图书馆发布了新的文献求助10
11秒前
12秒前
Carlo完成签到,获得积分10
13秒前
14秒前
阮阮发布了新的文献求助10
15秒前
16秒前
坦率紫烟发布了新的文献求助10
17秒前
哈哈发布了新的文献求助10
17秒前
zho发布了新的文献求助10
18秒前
852应助老实的二娘采纳,获得10
18秒前
19秒前
丘比特应助沐兮采纳,获得10
19秒前
21秒前
ff发布了新的文献求助10
22秒前
22秒前
23秒前
heshun完成签到,获得积分20
23秒前
逆时针完成签到,获得积分10
26秒前
codemath发布了新的文献求助50
26秒前
27秒前
文武完成签到,获得积分10
28秒前
Owen应助tys采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514561
求助须知:如何正确求助?哪些是违规求助? 3096931
关于积分的说明 9233203
捐赠科研通 2791934
什么是DOI,文献DOI怎么找? 1532173
邀请新用户注册赠送积分活动 711816
科研通“疑难数据库(出版商)”最低求助积分说明 707031