A Novel Building Extraction Network via Multi-Scale Foreground Modeling and Gated Boundary Refinement

计算机科学 边界(拓扑) 人工智能 基本事实 残余物 比例(比率) 过程(计算) 深度学习 模式识别(心理学) 计算机视觉 遥感 算法 地质学 地图学 数学 数学分析 地理 操作系统
作者
Jun-Lin Liu,Ying Xia,Jiangfan Feng,Peng Bai
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (24): 5638-5638 被引量:1
标识
DOI:10.3390/rs15245638
摘要

Deep learning-based methods for building extraction from remote sensing images have been widely applied in fields such as land management and urban planning. However, extracting buildings from remote sensing images commonly faces challenges due to specific shooting angles. First, there exists a foreground–background imbalance issue, and the model excessively learns features unrelated to buildings, resulting in performance degradation and propagative interference. Second, buildings have complex boundary information, while conventional network architectures fail to capture fine boundaries. In this paper, we designed a multi-task U-shaped network (BFL-Net) to solve these problems. This network enhances the expression of the foreground and boundary features in the prediction results through foreground learning and boundary refinement, respectively. Specifically, the Foreground Mining Module (FMM) utilizes the relationship between buildings and multi-scale scene spaces to explicitly model, extract, and learn foreground features, which can enhance foreground and related contextual features. The Dense Dilated Convolutional Residual Block (DDCResBlock) and the Dual Gate Boundary Refinement Module (DGBRM) individually process the diverted regular stream and boundary stream. The former can effectively expand the receptive field, and the latter utilizes spatial and channel gates to activate boundary features in low-level feature maps, helping the network refine boundaries. The predictions of the network for the building, foreground, and boundary are respectively supervised by ground truth. The experimental results on the WHU Building Aerial Imagery and Massachusetts Buildings Datasets show that the IoU scores of BFL-Net are 91.37% and 74.50%, respectively, surpassing state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhh应助张琳采纳,获得10
刚刚
威武从寒发布了新的文献求助10
刚刚
fiber发布了新的文献求助20
2秒前
HM发布了新的文献求助10
2秒前
JohnTong发布了新的文献求助10
2秒前
3秒前
3秒前
乐观若烟发布了新的文献求助10
4秒前
zhhl2006完成签到,获得积分10
4秒前
zhouzhou完成签到,获得积分10
4秒前
啊宁完成签到 ,获得积分10
4秒前
JoshuaChen发布了新的文献求助10
4秒前
开朗满天完成签到 ,获得积分10
5秒前
5秒前
5秒前
7秒前
赘婿应助Max采纳,获得10
7秒前
7秒前
Erislastem完成签到,获得积分10
7秒前
volcanoes完成签到,获得积分10
7秒前
蘇q完成签到 ,获得积分10
7秒前
Encore发布了新的文献求助10
7秒前
慈祥的翠梅完成签到,获得积分10
7秒前
8秒前
李爱国应助王不王采纳,获得10
8秒前
苏silence发布了新的文献求助10
8秒前
万能图书馆应助爱因斯宣采纳,获得10
8秒前
今后应助YZzzJ采纳,获得10
8秒前
如意雅山发布了新的文献求助10
8秒前
桢桢树发布了新的文献求助10
9秒前
戚薇发布了新的文献求助10
9秒前
9秒前
杰杰完成签到,获得积分10
10秒前
SciGPT应助gnr2000采纳,获得30
10秒前
我没那么郝完成签到,获得积分10
10秒前
亚琳发布了新的文献求助10
10秒前
10秒前
你想不想变成一粒芝麻完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582