A Novel Building Extraction Network via Multi-Scale Foreground Modeling and Gated Boundary Refinement

计算机科学 边界(拓扑) 人工智能 基本事实 残余物 比例(比率) 过程(计算) 深度学习 模式识别(心理学) 计算机视觉 遥感 算法 地质学 地图学 数学 数学分析 操作系统 地理
作者
Jun-Lin Liu,Ying Xia,Jiangfan Feng,Peng Bai
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (24): 5638-5638 被引量:1
标识
DOI:10.3390/rs15245638
摘要

Deep learning-based methods for building extraction from remote sensing images have been widely applied in fields such as land management and urban planning. However, extracting buildings from remote sensing images commonly faces challenges due to specific shooting angles. First, there exists a foreground–background imbalance issue, and the model excessively learns features unrelated to buildings, resulting in performance degradation and propagative interference. Second, buildings have complex boundary information, while conventional network architectures fail to capture fine boundaries. In this paper, we designed a multi-task U-shaped network (BFL-Net) to solve these problems. This network enhances the expression of the foreground and boundary features in the prediction results through foreground learning and boundary refinement, respectively. Specifically, the Foreground Mining Module (FMM) utilizes the relationship between buildings and multi-scale scene spaces to explicitly model, extract, and learn foreground features, which can enhance foreground and related contextual features. The Dense Dilated Convolutional Residual Block (DDCResBlock) and the Dual Gate Boundary Refinement Module (DGBRM) individually process the diverted regular stream and boundary stream. The former can effectively expand the receptive field, and the latter utilizes spatial and channel gates to activate boundary features in low-level feature maps, helping the network refine boundaries. The predictions of the network for the building, foreground, and boundary are respectively supervised by ground truth. The experimental results on the WHU Building Aerial Imagery and Massachusetts Buildings Datasets show that the IoU scores of BFL-Net are 91.37% and 74.50%, respectively, surpassing state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿发布了新的文献求助10
刚刚
隐形曼青应助老迟到的澜采纳,获得10
1秒前
1秒前
英俊的铭应助派123采纳,获得10
3秒前
完美世界应助一颗竹笋采纳,获得10
3秒前
FU完成签到,获得积分20
4秒前
5秒前
5秒前
韩浩男发布了新的文献求助10
5秒前
酷炫风华完成签到 ,获得积分10
7秒前
CodeCraft应助刻苦大门采纳,获得10
7秒前
8秒前
mumumu完成签到,获得积分10
8秒前
海岸完成签到,获得积分10
9秒前
一一发布了新的文献求助30
11秒前
绾绾完成签到 ,获得积分10
12秒前
007完成签到,获得积分10
13秒前
cindy完成签到 ,获得积分10
13秒前
wml应助Cyz采纳,获得10
14秒前
16秒前
斯文败类应助胡拉拉采纳,获得10
17秒前
Duke_ethan完成签到,获得积分10
18秒前
yang完成签到 ,获得积分10
18秒前
18秒前
18秒前
joe发布了新的文献求助10
19秒前
bkagyin应助xx采纳,获得10
19秒前
大个应助老干部采纳,获得10
20秒前
hymmm完成签到,获得积分10
20秒前
20秒前
22秒前
Return应助悄悄采纳,获得10
23秒前
梅雨季来信完成签到,获得积分10
23秒前
A晨发布了新的文献求助10
23秒前
yyyy发布了新的文献求助30
23秒前
24秒前
打打应助cwj采纳,获得10
24秒前
27秒前
QQ完成签到 ,获得积分10
28秒前
对掏大王发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700