A Novel Building Extraction Network via Multi-Scale Foreground Modeling and Gated Boundary Refinement

计算机科学 边界(拓扑) 人工智能 基本事实 残余物 比例(比率) 过程(计算) 深度学习 模式识别(心理学) 计算机视觉 遥感 算法 地质学 地图学 数学 数学分析 地理 操作系统
作者
Jun-Lin Liu,Ying Xia,Jiangfan Feng,Peng Bai
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (24): 5638-5638 被引量:1
标识
DOI:10.3390/rs15245638
摘要

Deep learning-based methods for building extraction from remote sensing images have been widely applied in fields such as land management and urban planning. However, extracting buildings from remote sensing images commonly faces challenges due to specific shooting angles. First, there exists a foreground–background imbalance issue, and the model excessively learns features unrelated to buildings, resulting in performance degradation and propagative interference. Second, buildings have complex boundary information, while conventional network architectures fail to capture fine boundaries. In this paper, we designed a multi-task U-shaped network (BFL-Net) to solve these problems. This network enhances the expression of the foreground and boundary features in the prediction results through foreground learning and boundary refinement, respectively. Specifically, the Foreground Mining Module (FMM) utilizes the relationship between buildings and multi-scale scene spaces to explicitly model, extract, and learn foreground features, which can enhance foreground and related contextual features. The Dense Dilated Convolutional Residual Block (DDCResBlock) and the Dual Gate Boundary Refinement Module (DGBRM) individually process the diverted regular stream and boundary stream. The former can effectively expand the receptive field, and the latter utilizes spatial and channel gates to activate boundary features in low-level feature maps, helping the network refine boundaries. The predictions of the network for the building, foreground, and boundary are respectively supervised by ground truth. The experimental results on the WHU Building Aerial Imagery and Massachusetts Buildings Datasets show that the IoU scores of BFL-Net are 91.37% and 74.50%, respectively, surpassing state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大王发布了新的文献求助10
1秒前
青枫浦上_完成签到 ,获得积分10
1秒前
hyhyhyhy发布了新的文献求助10
1秒前
corleeang完成签到 ,获得积分10
2秒前
2秒前
归尘发布了新的文献求助10
3秒前
3秒前
吴未完成签到,获得积分10
4秒前
强健的蚂蚁完成签到,获得积分10
4秒前
fzd完成签到,获得积分10
4秒前
呼呼呼完成签到 ,获得积分10
4秒前
谨慎盼山发布了新的文献求助10
5秒前
ppppp完成签到 ,获得积分10
5秒前
防腐木发布了新的文献求助10
6秒前
风清扬发布了新的文献求助10
6秒前
jojo完成签到,获得积分10
7秒前
现实的飞风完成签到,获得积分10
7秒前
情怀应助科研通管家采纳,获得50
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得30
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
绿豆饼完成签到 ,获得积分10
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
拼搏向上完成签到,获得积分10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
小巧凡霜完成签到,获得积分20
9秒前
李爱国应助huanghan采纳,获得10
9秒前
imlaoji发布了新的文献求助10
9秒前
白小超人完成签到 ,获得积分10
9秒前
乐情发布了新的文献求助20
10秒前
科研通AI6应助hyhyhyhy采纳,获得10
10秒前
大王完成签到,获得积分10
10秒前
11秒前
wp关注了科研通微信公众号
12秒前
谨慎盼山完成签到,获得积分10
14秒前
小杜超爱毛肚完成签到 ,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011650
求助须知:如何正确求助?哪些是违规求助? 4253023
关于积分的说明 13252960
捐赠科研通 4055663
什么是DOI,文献DOI怎么找? 2218299
邀请新用户注册赠送积分活动 1227935
关于科研通互助平台的介绍 1150088