Cross-Modal Feature Fusion and Interaction Strategy for CNN-Transformer-Based Object Detection in Visual and Infrared Remote Sensing Imagery

计算机科学 人工智能 保险丝(电气) 情态动词 计算机视觉 特征提取 模式识别(心理学) 目标检测 特征(语言学) 编码器 可视化 工程类 哲学 电气工程 化学 高分子化学 操作系统 语言学
作者
Jinyan Nie,He Sun,Xu Sun,Li Ni,Lianru Gao
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:3
标识
DOI:10.1109/lgrs.2023.3339214
摘要

Due to the complementarity of visible and infrared images, it has become more favorable to fuse these two modalities to improve the object detection accuracy in the remote sensing area. However, there are still some problems to be solved. Most of the existing algorithms focus too much on the local information and ignore long-range information when performing feature extraction on different modalities. Besides, coarse weighted fusion strategies do not fully utilize the information from different modalities, and the fusion structure ignores the importance of intermodal information exchange. To tackle these problems, a cross-modal feature fusion and interaction strategy for the convolutional neural network (CNN)-transformer-based object detection in visual and infrared remote sensing imagery is proposed. We adopt a parallel structure to extract the features of different modalities, separately. In visual and infrared modality, the convolutional layers and transformer encoders are cascaded to fully extract both local and long-range information. The cross-modal feature fusion and interaction module (CFFIM) adopts the attention mechanisms to jointly fuse different modal features at the same scale to improve the diversity of fused features, and the feature interaction enables the sharing of visible and infrared information. Experiments on the VEDAI dataset have demonstrated the effectiveness of the proposed scheme compared to other state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南宫若翠完成签到,获得积分10
刚刚
1秒前
Orange应助杜杜采纳,获得10
1秒前
无花果应助小小阿杰采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
seanfly完成签到,获得积分10
5秒前
大模型应助静静静采纳,获得10
5秒前
积极的雪莲完成签到,获得积分10
5秒前
6秒前
美丽心情发布了新的文献求助10
6秒前
巧可脆脆发布了新的文献求助10
8秒前
slz发布了新的文献求助10
8秒前
9秒前
9秒前
WY完成签到 ,获得积分10
10秒前
10秒前
11秒前
ED应助奶油W采纳,获得10
11秒前
13秒前
14秒前
15秒前
15秒前
15秒前
15秒前
15秒前
东方越彬发布了新的文献求助20
16秒前
16秒前
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
小巧谷波发布了新的文献求助10
18秒前
小巧谷波发布了新的文献求助20
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502600
关于积分的说明 11109235
捐赠科研通 3233391
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870607
科研通“疑难数据库(出版商)”最低求助积分说明 802123