Fracture mechanisms of NCM polycrystalline particles in lithium-ion batteries: A review

锂(药物) 微晶 断裂(地质) 材料科学 离子 法律工程学 复合材料 化学 冶金 工程类 心理学 精神科 有机化学
作者
Kexin Mao,Yiming Yao,Ying Chen,Wei Li,Xiaojie Shen,Jinyang Song,Haofeng Chen,Weiling Luan,Kai Wu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:84: 110807-110807 被引量:9
标识
DOI:10.1016/j.est.2024.110807
摘要

The development of high-energy LiNixCoyMnzO2 (NCM) cathode materials for lithium-ion batteries (LIBs) is central to many emerging technologies in the fields of power and energy storage. However, the limited cycle life of batteries caused by electrochemical and mechanical damage of NCM polycrystalline particles remains a crucial barrier to their applications. During the charging and discharging of batteries, the insertion and extraction of lithium-ions within the active particles induce diffusion-induced stresses, resulting in the fracture of NCM particles, which ultimately leads to a decline in the overall battery performance. In this review, the fracture mechanisms of NCM polycrystalline particles are systematically summarized, and the internal and intergranular defects in primary particles are comprehensively discussed, including dislocations, nanoscale pores, cation mixing oxygen vacancies grain boundaries and porosity. The influences of stress concentration, which occurs due to phase transitions, changes in the crystal structure and anisotropic volume variations during the insertion and extraction of lithium-ions, are also summarized in this work. These factors are the key to the initiation and propagation processes of intergranular and intragranular cracks in NCM polycrystalline particles. Finally, this review also aims to address the observation methods and existing research gaps related to the fracture damage mechanisms of NCM polycrystalline particles, which provide further assistance for the optimization design of NCM cathode materials and the precise prediction of battery performance degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热的白完成签到,获得积分10
刚刚
刚刚
斯文败类应助Cistone采纳,获得10
刚刚
李健应助123采纳,获得10
1秒前
王占帅发布了新的文献求助50
1秒前
HUSHIYI完成签到,获得积分10
1秒前
情怀应助沉静幻天采纳,获得10
3秒前
上官若男应助杏林靴子采纳,获得10
3秒前
3秒前
4秒前
笨笨歌曲发布了新的文献求助10
4秒前
栉风沐雨完成签到,获得积分10
4秒前
发财小彤发布了新的文献求助150
5秒前
Ha哈完成签到,获得积分10
6秒前
6秒前
完美世界应助善良青筠采纳,获得10
7秒前
KingYugene完成签到,获得积分10
8秒前
123456完成签到 ,获得积分10
8秒前
slx0410发布了新的文献求助50
9秒前
jocelyn发布了新的文献求助10
10秒前
11秒前
yu完成签到,获得积分10
12秒前
难过冰之发布了新的文献求助10
13秒前
muncy完成签到,获得积分10
13秒前
克偃统统完成签到,获得积分0
13秒前
13秒前
妩媚的强炫完成签到,获得积分10
14秒前
Xu完成签到,获得积分10
15秒前
afterall完成签到 ,获得积分10
16秒前
16秒前
anyujie完成签到 ,获得积分10
16秒前
淡淡的若冰完成签到 ,获得积分10
16秒前
俏皮的豌豆完成签到,获得积分10
17秒前
slx0410完成签到,获得积分10
17秒前
muncy发布了新的文献求助200
18秒前
book完成签到,获得积分10
20秒前
zgtmark完成签到,获得积分10
21秒前
22秒前
淡淡的若冰关注了科研通微信公众号
22秒前
小郭发布了新的文献求助10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137230
求助须知:如何正确求助?哪些是违规求助? 2788312
关于积分的说明 7785628
捐赠科研通 2444330
什么是DOI,文献DOI怎么找? 1299894
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023