已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Robust mortality prediction on a recirculating aquaculture system

稳健性(进化) 计算机科学 机器学习 水产养殖 超参数 人工智能 范畴变量 数据挖掘 生物化学 生物 基因 化学 渔业
作者
Vasco Costa,Eugénio M. Rocha,Carlos Marques
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (2)
标识
DOI:10.1063/5.0196248
摘要

Aquaculture presents itself as one of the most rapidly developing means of sustainable production of animal protein to feed ever-growing populations. Recirculating aquaculture systems offer higher control and fewer inconveniences than traditional systems, making them an attractive option for fish production. Although the sector’s digitalization is in its early stages, its application should increase its rentability while conserving the environment. This paper aims to promote the sector’s evolution by assessing parameter importance in mortality with tree-based machine learning models, verifying the method’s natural robustness and how it compares to a specially devised one, and at the same time evaluating the concept’s relevance in predicting categorical mortality values. In particular, to better understand the aquaculture production process through a systematic data evaluation, an exploration based on real-time data acquisition is fully needed. Moreover, algorithm robustness is a key ingredient in this application since measurements are greatly affected by errors. This invalidates the application of traditional machine learning methods, where models are sensitive to production data variations and sensor noise. The study found the parameters that play relevant roles in the production phases, such as pH and nitrate concentration. While the obtained predictive metrics are still sub-optimal, further enhancements could be achieved through rigorous analysis of feature engineering, fine-tuning model hyperparameters, and exploring more advanced algorithms. Additionally, incorporating larger and more diverse datasets, refining data pre-processing techniques, and iteratively optimizing the model architecture may contribute to significant improvements in predictive performance. Despite that, the impact costs of using adjusted machine learning metrics are clear, as are the importance of data rounding in pre-processing and directions for improvement regarding data acquisition and transformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张达发布了新的文献求助10
1秒前
5秒前
Akim应助莫茹采纳,获得10
9秒前
bian完成签到 ,获得积分10
13秒前
lailai完成签到 ,获得积分10
17秒前
烟花应助zhoupu采纳,获得10
20秒前
柯一一应助nhh采纳,获得10
23秒前
YAO完成签到 ,获得积分10
24秒前
松间蓝雾发布了新的文献求助10
25秒前
李昕123完成签到 ,获得积分10
26秒前
倒霉的芒果完成签到 ,获得积分10
26秒前
28秒前
yyds发布了新的文献求助10
32秒前
稳重岩完成签到 ,获得积分10
34秒前
KDS发布了新的文献求助10
35秒前
古炮完成签到 ,获得积分10
35秒前
zy完成签到 ,获得积分10
36秒前
小白完成签到 ,获得积分10
37秒前
二丙完成签到 ,获得积分10
39秒前
挚友完成签到 ,获得积分10
40秒前
40秒前
多情的续完成签到,获得积分10
40秒前
大模型应助andrele采纳,获得10
42秒前
chenbring发布了新的文献求助10
44秒前
zhuming完成签到,获得积分10
48秒前
chenbring完成签到,获得积分10
51秒前
wbs13521完成签到,获得积分0
51秒前
NexusExplorer应助科研通管家采纳,获得10
52秒前
小二郎应助科研通管家采纳,获得10
52秒前
爆米花应助科研通管家采纳,获得10
52秒前
Calyn完成签到 ,获得积分0
53秒前
鸣蜩十三完成签到,获得积分10
55秒前
sunflowers完成签到 ,获得积分10
56秒前
yyds完成签到,获得积分20
57秒前
清风明月完成签到 ,获得积分20
58秒前
科研通AI2S应助乃惜采纳,获得10
1分钟前
影月完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小菡菡完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956943
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11110935
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234