Robust mortality prediction on a recirculating aquaculture system

稳健性(进化) 计算机科学 机器学习 水产养殖 超参数 人工智能 范畴变量 数据挖掘 生物 生物化学 化学 基因 渔业
作者
Vasco Costa,Eugénio M. Rocha,Carlos Marques
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (2)
标识
DOI:10.1063/5.0196248
摘要

Aquaculture presents itself as one of the most rapidly developing means of sustainable production of animal protein to feed ever-growing populations. Recirculating aquaculture systems offer higher control and fewer inconveniences than traditional systems, making them an attractive option for fish production. Although the sector’s digitalization is in its early stages, its application should increase its rentability while conserving the environment. This paper aims to promote the sector’s evolution by assessing parameter importance in mortality with tree-based machine learning models, verifying the method’s natural robustness and how it compares to a specially devised one, and at the same time evaluating the concept’s relevance in predicting categorical mortality values. In particular, to better understand the aquaculture production process through a systematic data evaluation, an exploration based on real-time data acquisition is fully needed. Moreover, algorithm robustness is a key ingredient in this application since measurements are greatly affected by errors. This invalidates the application of traditional machine learning methods, where models are sensitive to production data variations and sensor noise. The study found the parameters that play relevant roles in the production phases, such as pH and nitrate concentration. While the obtained predictive metrics are still sub-optimal, further enhancements could be achieved through rigorous analysis of feature engineering, fine-tuning model hyperparameters, and exploring more advanced algorithms. Additionally, incorporating larger and more diverse datasets, refining data pre-processing techniques, and iteratively optimizing the model architecture may contribute to significant improvements in predictive performance. Despite that, the impact costs of using adjusted machine learning metrics are clear, as are the importance of data rounding in pre-processing and directions for improvement regarding data acquisition and transformation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加油完成签到,获得积分10
刚刚
LuckyJ_Jia应助Behappy采纳,获得50
2秒前
5秒前
lvlei发布了新的文献求助10
6秒前
共享精神应助刘勇采纳,获得10
8秒前
9秒前
10秒前
10秒前
Yy完成签到 ,获得积分10
10秒前
11秒前
无花果应助zjmali采纳,获得10
11秒前
13秒前
善学以致用应助gyhmm采纳,获得10
13秒前
Jayden完成签到 ,获得积分10
13秒前
14秒前
小帽子给小帽子的求助进行了留言
14秒前
15秒前
buno应助苏耘琛采纳,获得10
15秒前
16秒前
舒适静丹发布了新的文献求助10
17秒前
香蕉书竹发布了新的文献求助30
17秒前
充电宝应助武状元采纳,获得10
18秒前
嘀嘀嘀完成签到 ,获得积分10
18秒前
烟花应助xinqinjl采纳,获得30
18秒前
19秒前
19秒前
汉堡包应助没有昵称采纳,获得10
20秒前
jasam3514发布了新的文献求助10
22秒前
慕青应助舒适静丹采纳,获得10
22秒前
勤劳的小蜜蜂完成签到,获得积分10
22秒前
Raki完成签到 ,获得积分20
23秒前
小李子发布了新的文献求助10
24秒前
荒野脱马完成签到,获得积分10
25秒前
27秒前
烟花应助贝壳风铃采纳,获得30
27秒前
29秒前
29秒前
阳光的晓刚完成签到,获得积分10
29秒前
香蕉书竹完成签到,获得积分10
30秒前
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241487
求助须知:如何正确求助?哪些是违规求助? 2885956
关于积分的说明 8241111
捐赠科研通 2554477
什么是DOI,文献DOI怎么找? 1382579
科研通“疑难数据库(出版商)”最低求助积分说明 649608
邀请新用户注册赠送积分活动 625279