Deep-BCSI: A deep learning-based framework for bias correction and spatial imputation of PM2.5 concentrations in South Korea

深度学习 插补(统计学) 环境科学 人工智能 气候学 计算机科学 机器学习 地质学 缺少数据
作者
Deveshwar Singh,Yunsoo Choi,Jincheol Park,Ahmed Khan Salman,Alqamah Sayeed,Chul Han Song
出处
期刊:Atmospheric Research [Elsevier BV]
卷期号:: 107283-107283 被引量:3
标识
DOI:10.1016/j.atmosres.2024.107283
摘要

In this study, we introduce a deep learning-based framework, Deep-BCSI, which leverages Convolutional Neural Networks (CNN) for bias correction and Partial Convolutional Neural Networks (PConv) for spatial imputation. It is designed to enhance the accuracy of PM2.5 concentration forecasts over South Korea, at both station and grid levels, up to three days in advance. The framework utilizes 72-h simulations of 10 variables from the Community Multiscale Air Quality (CMAQ) model, 31 variables from the Weather Research and Forecasting (WRF) model, and 6 variables from the previous day's ground-based in-situ observations. The CNN and PConv models' training time spans from 2016 to 2019. The Deep-BCSI framework was evaluated in 2021. From Day 1 to Day 3, the CNN model demonstrated significant efficiency in bias correction, yielding higher Index of Agreement (IOA) values (0.71–0.80) compared to the CMAQ's (0.65–0.68) across 402 stations in South Korea. In metropolitan areas such as Seoul, Busan, Incheon, and Daegu, the Root Mean Squared Error (RMSE) was reduced by 25% - 41%. Post-bias correction, spatial imputation using the PConv model provided accurate grid-based forecasts of PM2.5 concentrations, particularly in the northwestern and southeastern regions of South Korea. From Day 1 to Day 3, a 10-fold spatial cross-validation reveals that the PConv model consistently yielded higher IOA values (0.71–0.79) compared to the CMAQ's (0.66–0.69). An analysis using Shapley Additive Explanations (SHAP) offered insights into the CNN model's prediction-making process, confirming it as scientifically valid and closely aligned with essential atmospheric chemistry and meteorological phenomena related to PM2.5 pollution. The Deep-BCSI presents an efficient framework for generating accurate PM2.5 concentration forecasts, particularly for urban regions. It has potential applications in operational facilities, planning, and policymaking to mitigate the hazards posed by PM2.5 pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
芝9512完成签到 ,获得积分10
1秒前
albertxin发布了新的文献求助10
1秒前
江风海韵完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
田様应助仓鼠球采纳,获得10
2秒前
小胡先森应助hhj采纳,获得10
3秒前
shen完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
如意以晴发布了新的文献求助10
5秒前
斯文中道发布了新的文献求助10
5秒前
6秒前
6秒前
在水一方应助Lenacici采纳,获得10
7秒前
7秒前
Ava应助油条采纳,获得20
7秒前
mrx完成签到,获得积分20
8秒前
Smiley发布了新的文献求助10
8秒前
Smiley发布了新的文献求助10
8秒前
9秒前
Xue发布了新的文献求助10
11秒前
zyshao发布了新的文献求助10
11秒前
11秒前
Hmn发布了新的文献求助10
12秒前
12秒前
mrx发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
ztt发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126