Deep-BCSI: A deep learning-based framework for bias correction and spatial imputation of PM2.5 concentrations in South Korea

深度学习 插补(统计学) 环境科学 人工智能 气候学 计算机科学 机器学习 地质学 缺少数据
作者
Deveshwar Singh,Yunsoo Choi,Jincheol Park,Ahmed Khan Salman,Alqamah Sayeed,Chul Han Song
出处
期刊:Atmospheric Research [Elsevier]
卷期号:: 107283-107283 被引量:3
标识
DOI:10.1016/j.atmosres.2024.107283
摘要

In this study, we introduce a deep learning-based framework, Deep-BCSI, which leverages Convolutional Neural Networks (CNN) for bias correction and Partial Convolutional Neural Networks (PConv) for spatial imputation. It is designed to enhance the accuracy of PM2.5 concentration forecasts over South Korea, at both station and grid levels, up to three days in advance. The framework utilizes 72-h simulations of 10 variables from the Community Multiscale Air Quality (CMAQ) model, 31 variables from the Weather Research and Forecasting (WRF) model, and 6 variables from the previous day's ground-based in-situ observations. The CNN and PConv models' training time spans from 2016 to 2019. The Deep-BCSI framework was evaluated in 2021. From Day 1 to Day 3, the CNN model demonstrated significant efficiency in bias correction, yielding higher Index of Agreement (IOA) values (0.71–0.80) compared to the CMAQ's (0.65–0.68) across 402 stations in South Korea. In metropolitan areas such as Seoul, Busan, Incheon, and Daegu, the Root Mean Squared Error (RMSE) was reduced by 25% - 41%. Post-bias correction, spatial imputation using the PConv model provided accurate grid-based forecasts of PM2.5 concentrations, particularly in the northwestern and southeastern regions of South Korea. From Day 1 to Day 3, a 10-fold spatial cross-validation reveals that the PConv model consistently yielded higher IOA values (0.71–0.79) compared to the CMAQ's (0.66–0.69). An analysis using Shapley Additive Explanations (SHAP) offered insights into the CNN model's prediction-making process, confirming it as scientifically valid and closely aligned with essential atmospheric chemistry and meteorological phenomena related to PM2.5 pollution. The Deep-BCSI presents an efficient framework for generating accurate PM2.5 concentration forecasts, particularly for urban regions. It has potential applications in operational facilities, planning, and policymaking to mitigate the hazards posed by PM2.5 pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梯坎完成签到 ,获得积分10
刚刚
嘿嘿完成签到,获得积分10
1秒前
2秒前
夏青荷发布了新的文献求助10
4秒前
醉熏的井完成签到 ,获得积分10
5秒前
lcc完成签到,获得积分10
6秒前
6秒前
李先生发布了新的文献求助10
7秒前
不配.应助云风采纳,获得10
8秒前
NJY完成签到,获得积分20
11秒前
大反应釜完成签到,获得积分10
11秒前
Hello应助香山叶正红采纳,获得10
12秒前
14秒前
14秒前
大妈完成签到,获得积分10
14秒前
18秒前
QY11发布了新的文献求助10
19秒前
爱听歌的大地完成签到 ,获得积分10
20秒前
Orange应助韭菜盒子采纳,获得10
20秒前
无花果应助周稅采纳,获得10
20秒前
21秒前
知性的真完成签到,获得积分20
21秒前
21秒前
21秒前
21秒前
玛珂巴巴珂完成签到,获得积分10
24秒前
24秒前
知性的真发布了新的文献求助10
25秒前
25秒前
25秒前
清脆语海发布了新的文献求助10
26秒前
二丙发布了新的文献求助10
26秒前
咪吖完成签到 ,获得积分10
27秒前
雪白起眸发布了新的文献求助30
27秒前
27秒前
27秒前
28秒前
淡定亦凝完成签到,获得积分10
28秒前
小高同学发布了新的文献求助10
29秒前
小朋友完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136176
求助须知:如何正确求助?哪些是违规求助? 2787079
关于积分的说明 7780454
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298964
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870