亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DDoS attack detection and mitigation using deep neural network in SDN environment

服务拒绝攻击 计算机科学 应用层DDoS攻击 人工神经网络 人工智能 万维网 互联网
作者
Vanlalruata Hnamte,Ashfaq Ahmad Najar,Hong Nhung-Nguyen,Jamal Hussain,S. Manohar Naik
出处
期刊:Computers & Security [Elsevier]
卷期号:138: 103661-103661 被引量:8
标识
DOI:10.1016/j.cose.2023.103661
摘要

In the contemporary digital landscape, the escalating threat landscape of cyber attacks, particularly distributed denial-of-service (DDoS) attacks, has become a paramount concern for network security. This research introduces an innovative approach to DDoS detection leveraging a deep neural network (DNN) architecture rooted in deep learning (DL) principles. The proposed model exhibits a scalable and adaptable framework, enabling meticulous analysis of network traffic data to discern intricate patterns indicative of DDoS attacks. To validate the efficacy of our methodology, rigorous evaluations were conducted using authentic real-world traffic data. The results unequivocally establish the superiority of our DNN-based approach over traditional DDoS detection techniques. This research holds significant promise for bolstering network security, particularly within the dynamic landscape of software-defined network (SDN) environments. The study's findings contribute to the continual refinement and eventual deployment of advanced measures in fortifying digital infrastructure against the evolving threat landscape. Performance metrics, including detection accuracy and loss rates, further emphasize the effectiveness of our approach across different datasets. With detection accuracy rates of 99.98%, 100%, and 99.99% for the InSDN, CICIDS2018, and Kaggle DDoS datasets, respectively, coupled with low loss rates, our DNN-based model demonstrates robust capabilities in mitigating contemporary DDoS threats. This study not only presents a novel DDoS detection approach within SDN infrastructures but also offers insights into practical implications and challenges associated with deploying DNNs in real-world SDN environments. Network security professionals can benefit from the nuanced perspectives provided, contributing to the ongoing discourse on fortifying digital networks against evolving cyber threats.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdfqaz完成签到,获得积分10
2秒前
Ec_w完成签到 ,获得积分10
6秒前
动听凝安发布了新的文献求助10
7秒前
11秒前
27秒前
29秒前
Yuna96发布了新的文献求助10
32秒前
yungm发布了新的文献求助10
35秒前
朱珠贝完成签到,获得积分10
38秒前
cjy完成签到 ,获得积分10
46秒前
Zer完成签到,获得积分10
51秒前
大个应助rongrong采纳,获得10
1分钟前
zs完成签到 ,获得积分10
1分钟前
Ernie完成签到,获得积分10
1分钟前
1分钟前
rongrong发布了新的文献求助10
1分钟前
小张完成签到 ,获得积分10
1分钟前
酢浆草小熊完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
雨阳完成签到 ,获得积分10
1分钟前
今后应助hhhh采纳,获得10
2分钟前
2分钟前
归海梦岚完成签到,获得积分0
2分钟前
2分钟前
CodeCraft应助风中的夕阳采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
汉堡包应助清雨采纳,获得10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
俞无声发布了新的文献求助10
2分钟前
俞无声发布了新的文献求助10
2分钟前
俞无声发布了新的文献求助10
2分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162300
求助须知:如何正确求助?哪些是违规求助? 2813318
关于积分的说明 7899645
捐赠科研通 2472733
什么是DOI,文献DOI怎么找? 1316507
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142