A novel hybridization approach to improve the critical distance clustering algorithm: Balancing speed and quality

计算机科学 聚类分析 质量(理念) 算法 数据挖掘 人工智能 哲学 认识论
作者
Farag Hamed Kuwil,Ümit Atila
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123298-123298 被引量:1
标识
DOI:10.1016/j.eswa.2024.123298
摘要

Clustering is a prominent research area, with numerous studies and the development of hundreds of algorithms over the years. However, a fundamental challenge in clustering research is the trade-off between algorithm speed and clustering quality. Existing algorithms tend to prioritize either fast execution with compromised clustering quality or slower performance with superior clustering results. In this study, we propose a novel CDC-2 algorithm, an improved version of the Critical Distance Clustering (CDC) algorithm, to address this challenge. Inspired by the concepts of hybridization in biology and the division of labor in the economic system, we present a new hybridization strategy. Our approach integrates the connectivity and coherence aspects of the K-means and CDC-2 algorithms, respectively, allowing us to combine speed and quality in a single algorithm. This approach is referred to as the CDC++ algorithm, and it is characterized as a hybrid that combines elements from two algorithms, K-means and CDC-2, in order to leverage their strengths while mitigating their weaknesses. Moreover, the structure and mechanism of the CDC++ algorithm led to the introduction of a new concept called “object autoencoder.” Unlike traditional feature reduction methods, this concept focuses on object reduction, representing a significant advancement in clustering techniques. To validate our approach, we conducted experimental studies on thirteen synthetic and five real datasets. Comparative analysis with four well-known algorithms demonstrates that our proposed development and hybridization enable efficient processing of large-scale and high-dimensional datasets without compromising clustering quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的雪完成签到 ,获得积分10
1秒前
1秒前
sawyer发布了新的文献求助10
1秒前
斯文败类应助Daisy采纳,获得10
1秒前
WN发布了新的文献求助30
2秒前
爆米花应助wangyaofeng采纳,获得10
2秒前
小巧问芙完成签到 ,获得积分10
2秒前
dd发布了新的文献求助10
2秒前
dajjyln发布了新的文献求助10
2秒前
3秒前
困就睡觉发布了新的文献求助10
3秒前
踏雪完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
菠萝菠萝蜜关注了科研通微信公众号
4秒前
dui完成签到,获得积分10
4秒前
raininjuly完成签到,获得积分10
4秒前
王一鸣发布了新的文献求助10
4秒前
4秒前
wtian1221完成签到,获得积分10
4秒前
沉默的婴完成签到,获得积分10
5秒前
5秒前
qijie发布了新的文献求助10
5秒前
sawyer完成签到,获得积分20
6秒前
lpp32完成签到,获得积分10
6秒前
自由大叔发布了新的文献求助10
6秒前
田様应助俏皮沂采纳,获得10
6秒前
7秒前
刘大妮完成签到,获得积分10
8秒前
yimu发布了新的文献求助10
8秒前
FashionBoy应助aaaaa采纳,获得10
8秒前
11发布了新的文献求助10
8秒前
小小王完成签到,获得积分10
8秒前
9秒前
alice完成签到 ,获得积分10
9秒前
9秒前
菜穗子发布了新的文献求助10
9秒前
10秒前
米龙完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997