A novel hybridization approach to improve the critical distance clustering algorithm: Balancing speed and quality

计算机科学 聚类分析 质量(理念) 算法 数据挖掘 人工智能 哲学 认识论
作者
Farag Hamed Kuwil,Ümit Atila
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123298-123298
标识
DOI:10.1016/j.eswa.2024.123298
摘要

Clustering is a prominent research area, with numerous studies and the development of hundreds of algorithms over the years. However, a fundamental challenge in clustering research is the trade-off between algorithm speed and clustering quality. Existing algorithms tend to prioritize either fast execution with compromised clustering quality or slower performance with superior clustering results. In this study, we propose a novel CDC-2 algorithm, an improved version of the Critical Distance Clustering (CDC) algorithm, to address this challenge. Inspired by the concepts of hybridization in biology and the division of labor in the economic system, we present a new hybridization strategy. Our approach integrates the connectivity and coherence aspects of the K-means and CDC-2 algorithms, respectively, allowing us to combine speed and quality in a single algorithm. This approach is referred to as the CDC++ algorithm, and it is characterized as a hybrid that combines elements from two algorithms, K-means and CDC-2, in order to leverage their strengths while mitigating their weaknesses. Moreover, the structure and mechanism of the CDC++ algorithm led to the introduction of a new concept called “object autoencoder.” Unlike traditional feature reduction methods, this concept focuses on object reduction, representing a significant advancement in clustering techniques. To validate our approach, we conducted experimental studies on thirteen synthetic and five real datasets. Comparative analysis with four well-known algorithms demonstrates that our proposed development and hybridization enable efficient processing of large-scale and high-dimensional datasets without compromising clustering quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爱鱼人士应助鲤鱼灵阳采纳,获得10
1秒前
YI发布了新的文献求助20
2秒前
liang发布了新的文献求助10
2秒前
每天都很困完成签到,获得积分10
2秒前
善学以致用应助kakafan采纳,获得10
3秒前
CipherSage应助diu采纳,获得10
4秒前
清脆愫完成签到 ,获得积分10
4秒前
香蕉觅云应助当归参子采纳,获得10
4秒前
ff发布了新的文献求助10
4秒前
旱田蜗牛发布了新的文献求助10
4秒前
陈庆学发布了新的文献求助10
5秒前
7秒前
舒心的娃完成签到,获得积分10
7秒前
zuoamian完成签到,获得积分10
7秒前
共享精神应助每天都很困采纳,获得10
8秒前
8秒前
10秒前
机智剑封完成签到,获得积分10
10秒前
小楼完成签到,获得积分10
11秒前
Sady发布了新的文献求助10
12秒前
CipherSage应助旱田蜗牛采纳,获得10
13秒前
15秒前
juju发布了新的文献求助40
15秒前
77发布了新的文献求助10
16秒前
敏感的手机完成签到 ,获得积分10
17秒前
19秒前
19秒前
张张发布了新的文献求助10
21秒前
LZHWSND完成签到,获得积分10
21秒前
Ava应助猪小猪采纳,获得10
23秒前
cg发布了新的文献求助10
26秒前
26秒前
liang发布了新的文献求助10
28秒前
天上的鱼完成签到,获得积分10
28秒前
Sady完成签到,获得积分10
28秒前
包容的葵阴完成签到,获得积分20
29秒前
aric发布了新的文献求助10
30秒前
HAHAHA发布了新的文献求助10
31秒前
张张完成签到,获得积分10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293585
求助须知:如何正确求助?哪些是违规求助? 2929476
关于积分的说明 8442265
捐赠科研通 2601632
什么是DOI,文献DOI怎么找? 1420043
科研通“疑难数据库(出版商)”最低求助积分说明 660486
邀请新用户注册赠送积分活动 643091