亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved generative adversarial network to oversample imbalanced datasets

鉴别器 计算机科学 过采样 水准点(测量) 残余物 人工智能 模式识别(心理学) 约束(计算机辅助设计) 采样(信号处理) 算法 数据挖掘 机器学习 探测器 数学 计算机网络 电信 几何学 大地测量学 带宽(计算) 地理
作者
Tingting Pan,Witold Pedrycz,Jie Yang,Jian Wang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:132: 107934-107934 被引量:4
标识
DOI:10.1016/j.engappai.2024.107934
摘要

Many oversampling methods applied to imbalanced data generate samples according to local density distribution of minority samples. However, samples generated by these methods can only present a non-deterministic relationship between the local and global distributions. A generative adversarial network (GAN) is a suitable tool to learn an unknown global probability distribution. In this paper, we propose an improved GAN (I-GAN) to oversample according to the global underlying structure of minority samples. The originality of I-GAN stems from the fact it provides additional density distribution information of minority samples for GAN and generated samples. By building on this idea, three detailed strategies are presented: input random vectors of the generator are sampled from a rough estimate of the distribution of minority samples to orientate fake samples more believable; a residual about minority samples is added into the discriminator to strengthen the constraint of loss function; generated samples are redistributed with a reshaper. These three strategies provide innovative methodologies at various stages of GANs for the oversampling task. Compared with 22 classical and popular imbalanced sampling methods under metrics of Gm, F1, and AUC on 24 benchmark imbalanced datasets, it is shown that I-GAN is effective and robust. The I-GAN implementation line procedure has been uploaded to Github (https://github.com/flowerbloom000/I-GAN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花公子完成签到,获得积分10
2秒前
sola完成签到 ,获得积分10
4秒前
懒羊羊大王完成签到 ,获得积分10
8秒前
18秒前
欢呼的寻双完成签到,获得积分10
26秒前
Mollyshimmer完成签到 ,获得积分10
27秒前
SCIfafafafa发布了新的文献求助10
1分钟前
duxiao完成签到 ,获得积分10
1分钟前
情怀应助SCIfafafafa采纳,获得10
1分钟前
小六子完成签到,获得积分10
1分钟前
Lucas应助duxiao采纳,获得10
1分钟前
Aaron完成签到 ,获得积分0
2分钟前
在水一方应助科研通管家采纳,获得30
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
2分钟前
Jasper应助hongtao采纳,获得10
2分钟前
3分钟前
JamesPei应助Fung采纳,获得10
3分钟前
3分钟前
心肝宝贝甜蜜饯完成签到,获得积分10
3分钟前
3分钟前
qiu发布了新的文献求助10
4分钟前
顾矜应助狂发文章采纳,获得10
4分钟前
4分钟前
Djnsbj发布了新的文献求助10
4分钟前
4分钟前
狂发文章发布了新的文献求助10
4分钟前
4分钟前
寒冷苗条应助Djnsbj采纳,获得10
4分钟前
小蘑菇应助Djnsbj采纳,获得10
4分钟前
狂发文章完成签到,获得积分10
4分钟前
4分钟前
4分钟前
duxiao发布了新的文献求助10
4分钟前
hongtao发布了新的文献求助10
4分钟前
4分钟前
Mandy发布了新的文献求助10
4分钟前
我好想睡完成签到,获得积分10
4分钟前
Iron_five完成签到 ,获得积分10
5分钟前
小二郎应助Mandy采纳,获得10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155650
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214