亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved generative adversarial network to oversample imbalanced datasets

鉴别器 计算机科学 过采样 水准点(测量) 残余物 人工智能 模式识别(心理学) 约束(计算机辅助设计) 采样(信号处理) 算法 数据挖掘 机器学习 探测器 数学 计算机网络 电信 几何学 大地测量学 带宽(计算) 地理
作者
Tingting Pan,Witold Pedrycz,Jie Yang,Jian Wang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:132: 107934-107934 被引量:4
标识
DOI:10.1016/j.engappai.2024.107934
摘要

Many oversampling methods applied to imbalanced data generate samples according to local density distribution of minority samples. However, samples generated by these methods can only present a non-deterministic relationship between the local and global distributions. A generative adversarial network (GAN) is a suitable tool to learn an unknown global probability distribution. In this paper, we propose an improved GAN (I-GAN) to oversample according to the global underlying structure of minority samples. The originality of I-GAN stems from the fact it provides additional density distribution information of minority samples for GAN and generated samples. By building on this idea, three detailed strategies are presented: input random vectors of the generator are sampled from a rough estimate of the distribution of minority samples to orientate fake samples more believable; a residual about minority samples is added into the discriminator to strengthen the constraint of loss function; generated samples are redistributed with a reshaper. These three strategies provide innovative methodologies at various stages of GANs for the oversampling task. Compared with 22 classical and popular imbalanced sampling methods under metrics of Gm, F1, and AUC on 24 benchmark imbalanced datasets, it is shown that I-GAN is effective and robust. The I-GAN implementation line procedure has been uploaded to Github (https://github.com/flowerbloom000/I-GAN).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
国色不染尘完成签到,获得积分10
13秒前
24秒前
结实的半双完成签到,获得积分10
27秒前
30秒前
芙瑞完成签到 ,获得积分10
41秒前
43秒前
1分钟前
Azlne完成签到,获得积分10
1分钟前
2分钟前
zhjl发布了新的文献求助10
2分钟前
2分钟前
滕皓轩完成签到 ,获得积分20
2分钟前
3分钟前
清脆语海发布了新的文献求助10
3分钟前
李爱国应助清脆语海采纳,获得10
3分钟前
3分钟前
4分钟前
MiaMia应助科研通管家采纳,获得30
4分钟前
科研通AI6应助科研通管家采纳,获得30
4分钟前
4分钟前
香蕉觅云应助zl采纳,获得10
4分钟前
zym完成签到 ,获得积分10
4分钟前
4分钟前
ZYP发布了新的文献求助10
5分钟前
深情安青应助朱羊羊采纳,获得10
5分钟前
5分钟前
5分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
6分钟前
zl发布了新的文献求助10
6分钟前
hhx完成签到,获得积分20
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639739
求助须知:如何正确求助?哪些是违规求助? 4750173
关于积分的说明 15007280
捐赠科研通 4797915
什么是DOI,文献DOI怎么找? 2564024
邀请新用户注册赠送积分活动 1522896
关于科研通互助平台的介绍 1482574