An Ultra-Lightweight Hybrid CNN Based on Redundancy Removal for Hyperspectral Image Classification

冗余(工程) 计算机科学 高光谱成像 卷积(计算机科学) 卷积神经网络 人工智能 特征提取 上下文图像分类 模式识别(心理学) 核(代数) 人工神经网络 图像(数学) 数学 组合数学 操作系统
作者
Xiaohu Ma,Wuli Wang,Wei Li,Jianbu Wang,Guangbo Ren,Peng Ren,Baodi Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tgrs.2024.3356524
摘要

Convolutional neural network (CNN)-based hyperspectral image (HSI) classification models often exhibit high volume and complexity. This not only poses challenges in deploying them on mobile and embedded devices due to storage and power constraints but also introduces a dilemma between the growing demand for labeled samples and the high cost associated with manual labeling. To address these challenges, we propose an ultra-lightweight hybrid CNN based on redundancy removal (ULite-R2HCN), specifically designed for HSI classification in scenarios with limited samples. To reduce computational costs and enhance feature extraction effectiveness, we focus on optimizing the widely used depthwise convolution (DW-Conv) and pointwise convolution (PW-Conv) in the lightweight HSI classification model. For DW-Conv, we design a spatial convolution with redundancy removal (R2Spatial-Conv). This involves the design of multi-scale 3D convolution kernels with specific structures instead of 2D convolution kernels, aiming to reduce redundant convolution kernels and extract multi-scale spatial features. Simultaneously, for PW-Conv, we design a spectral convolution with redundancy removal (R2Spectral-Conv). This utilizes a “copy-splicing-grouping” structure to extract spectral features within arbitrary range intervals, effectively reducing redundant spectral extractions and capturing long-range spectral relationships. Numerous experiments have shown that the proposed ULite-R2HCN achieves higher classification accuracy with an ultra-light volume for a few training samples. In addition, sufficient ablation experiments also verified the advanced performance of the designed R2Spatial-Conv and R2Spectral-Conv.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助奔奔采纳,获得10
1秒前
LLLBoris发布了新的文献求助10
1秒前
1秒前
万能图书馆应助鄢廷芮采纳,获得10
4秒前
调皮的朝雪完成签到,获得积分10
4秒前
所所应助Troye采纳,获得10
5秒前
东阳发布了新的文献求助10
6秒前
luckyd完成签到 ,获得积分0
6秒前
充电宝应助沉默的阁采纳,获得20
8秒前
8秒前
LLLBoris完成签到,获得积分10
9秒前
72完成签到 ,获得积分10
12秒前
sn完成签到,获得积分10
12秒前
p13508397190发布了新的文献求助10
12秒前
JamesPei应助习惯采纳,获得10
16秒前
kilion完成签到,获得积分10
17秒前
Nan完成签到,获得积分10
18秒前
完美世界应助feihu采纳,获得10
19秒前
21秒前
lucky完成签到,获得积分10
23秒前
23秒前
科研通AI2S应助橘仔乐采纳,获得10
24秒前
研友_8y2o0L发布了新的文献求助10
24秒前
lily完成签到,获得积分10
26秒前
26秒前
晏子发布了新的文献求助10
27秒前
27秒前
29秒前
Eruri发布了新的文献求助10
32秒前
feihu发布了新的文献求助10
34秒前
hht发布了新的文献求助10
34秒前
琉璃完成签到,获得积分10
35秒前
singfluer完成签到,获得积分10
36秒前
39秒前
小蘑菇应助ffiu采纳,获得10
40秒前
322628完成签到,获得积分10
40秒前
41秒前
42秒前
p13508397190完成签到,获得积分10
44秒前
123123发布了新的文献求助10
44秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140624
求助须知:如何正确求助?哪些是违规求助? 2791434
关于积分的说明 7798983
捐赠科研通 2447824
什么是DOI,文献DOI怎么找? 1302046
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194