已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Ultralightweight Hybrid CNN Based on Redundancy Removal for Hyperspectral Image Classification

冗余(工程) 计算机科学 高光谱成像 卷积(计算机科学) 卷积神经网络 人工智能 特征提取 上下文图像分类 模式识别(心理学) 核(代数) 人工神经网络 图像(数学) 数学 组合数学 操作系统
作者
Xiaohu Ma,Wuli Wang,Wei Li,Jianbu Wang,Guangbo Ren,Peng Ren,Baodi Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:19
标识
DOI:10.1109/tgrs.2024.3356524
摘要

Convolutional neural network (CNN)-based hyperspectral image (HSI) classification models often exhibit high volume and complexity. This not only poses challenges in deploying them on mobile and embedded devices due to storage and power constraints but also introduces a dilemma between the growing demand for labeled samples and the high cost associated with manual labeling. To address these challenges, we propose an ultra-lightweight hybrid CNN based on redundancy removal (ULite-R2HCN), specifically designed for HSI classification in scenarios with limited samples. To reduce computational costs and enhance feature extraction effectiveness, we focus on optimizing the widely used depthwise convolution (DW-Conv) and pointwise convolution (PW-Conv) in the lightweight HSI classification model. For DW-Conv, we design a spatial convolution with redundancy removal (R2Spatial-Conv). This involves the design of multi-scale 3D convolution kernels with specific structures instead of 2D convolution kernels, aiming to reduce redundant convolution kernels and extract multi-scale spatial features. Simultaneously, for PW-Conv, we design a spectral convolution with redundancy removal (R2Spectral-Conv). This utilizes a "copy-splicing-grouping" structure to extract spectral features within arbitrary range intervals, effectively reducing redundant spectral extractions and capturing long-range spectral relationships. Numerous experiments have shown that the proposed ULite-R2HCN achieves higher classification accuracy with an ultra-light volume for a few training samples. In addition, sufficient ablation experiments also verified the advanced performance of the designed R2Spatial-Conv and R2Spectral-Conv.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
传奇3应助紧张的毛衣采纳,获得10
3秒前
纯情大蟑螂完成签到 ,获得积分10
5秒前
小巧尔曼关注了科研通微信公众号
7秒前
竺七完成签到 ,获得积分10
7秒前
7秒前
8秒前
无敌橙汁oh完成签到 ,获得积分10
8秒前
9秒前
Z_jx完成签到,获得积分10
12秒前
Spine发布了新的文献求助10
14秒前
红星路吃饼子的派大星完成签到 ,获得积分10
14秒前
儒雅涵易完成签到 ,获得积分10
14秒前
18秒前
20秒前
21秒前
22秒前
科研通AI6应助火星上念梦采纳,获得10
22秒前
22秒前
小巧尔曼发布了新的文献求助10
23秒前
Akim应助明亮的河马采纳,获得10
24秒前
24秒前
25秒前
jacob258完成签到 ,获得积分10
26秒前
小蘑菇应助aaa采纳,获得10
28秒前
马畅完成签到 ,获得积分10
29秒前
29秒前
笨笨的秋蝶完成签到,获得积分10
31秒前
Spine完成签到,获得积分10
32秒前
zz爱学习完成签到,获得积分10
33秒前
研友_VZG7GZ应助谦让的小龙采纳,获得10
33秒前
阳光的海露完成签到,获得积分10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
Akim应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
36秒前
orixero应助科研通管家采纳,获得10
36秒前
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356070
求助须知:如何正确求助?哪些是违规求助? 4487906
关于积分的说明 13971244
捐赠科研通 4388674
什么是DOI,文献DOI怎么找? 2411197
邀请新用户注册赠送积分活动 1403730
关于科研通互助平台的介绍 1377447