Classroom Emotion Monitoring Based on Image Processing

理解力 心理学 班级(哲学) 过程(计算) 动作(物理) 主题(文档) 情感(语言学) 面部表情 数学教育 计算机科学 人工智能 沟通 图书馆学 程序设计语言 物理 操作系统 量子力学
作者
Cèlia Llurba,Gabriela Fretes,Ramón Palau
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (2): 916-916 被引量:1
标识
DOI:10.3390/su16020916
摘要

One challenge of teaching and learning the lack of information during these processes, including information about students’ emotions. Emotions play a role in learning and processing information, impacting accurate comprehension. Furthermore, emotions affect students’ academic engagement and performance. Consideration of students’ emotions, and therefore their well-being, contributes to building a more sustainable society. A new way of obtaining such information is by monitoring students’ facial emotions. Accordingly, the purpose of this study was to explore whether the use of such advanced technologies can assist the teaching–learning process while ensuring the emotional well-being of secondary school students. A model of Emotional Recognition (ER) was designed for use in a classroom. The model employs a custom code, recorded videos, and images to identify faces, follow action units (AUs), and classify the students’ emotions displayed on screen. We then analysed the classified emotions according to the academic year, subject, and moment in the lesson. The results revealed a range of emotions in the classroom, both pleasant and unpleasant. We observed significant variations in the presence of certain emotions based on the beginning or end of the class, subject, and academic year, although no clear patterns emerged. Our discussion focuses on the relationship between emotions, academic performance, and sustainability. We recommend that future research prioritise the study of how teachers can use ER-based tools to improve both the well-being and performance of students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜梨愁发布了新的文献求助10
1秒前
xcxc完成签到,获得积分10
1秒前
LZYC完成签到,获得积分20
2秒前
2秒前
3秒前
4秒前
5秒前
1223完成签到,获得积分10
5秒前
可爱的函函应助伍德采纳,获得10
6秒前
8秒前
9秒前
小宝发布了新的文献求助80
9秒前
10秒前
李爱国应助HD采纳,获得10
10秒前
qiuqiu完成签到,获得积分10
12秒前
ZD完成签到 ,获得积分10
12秒前
顾矜应助开心友儿采纳,获得10
12秒前
gujianhua发布了新的文献求助10
13秒前
屈苞络发布了新的文献求助10
14秒前
14秒前
哈哈哈哈哈完成签到,获得积分10
14秒前
15秒前
xdy发布了新的文献求助10
16秒前
脑洞疼应助靬七采纳,获得10
16秒前
leozhao发布了新的文献求助30
17秒前
17秒前
18秒前
田様应助nuo采纳,获得10
19秒前
19秒前
甜美小蕾发布了新的文献求助10
19秒前
现代书雪发布了新的文献求助10
20秒前
20秒前
动听的人英完成签到 ,获得积分10
20秒前
屈苞络完成签到 ,获得积分10
21秒前
21秒前
21秒前
yoyo发布了新的文献求助10
21秒前
小宝完成签到,获得积分10
21秒前
22秒前
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141001
求助须知:如何正确求助?哪些是违规求助? 2791912
关于积分的说明 7800960
捐赠科研通 2448184
什么是DOI,文献DOI怎么找? 1302459
科研通“疑难数据库(出版商)”最低求助积分说明 626588
版权声明 601226